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Abstract

In finance, moving averages are commonly used to reveal trends from time-series. From those
trends, information about the market or forecasts are often deduced. However, when the term
moving average is used, most of the time it implies the use of the simple moving average (similar
weight for all the observations) or the exponentially weighted moving average (weights decrease
exponentially).
From a signal processing point of view, moving averages are a subset of digital filters and many

were already designed to solve problems in a broad range of fields (e.g. telecommunication, image
processing, acoustic, medicine, ...) . Hence, in this study, we investigate the substitution of the
ubiquitously used simple and exponentially weighted moving averages (SMA and EWMA) with
new moving averages that are borrowed from the signal processing field and try to beat the
performance of the regularly used filters.
We first research investing strategies where moving averages are used to extract trends from

time-series. After being coupled with a trading rule, those trends recommend a short or long
position. We are interested in replacing the typically used EWMA with filters that have a less
abrupt decay in weights; rather than have an impulse function that is only convex, an inflection
point is introduced so that the filters have desirable characteristics both from the SMA and
EWMA. In addition, we also test the use of a filter that has oscillations (positive and negative
weights). We measure the performances of the filters with standard indicators and then compare
the different filters for different types of markets. Tests are conducted on a portfolio of over 100
securities traded daily including equities, forex and commodities. Results showed that in general
the filter are significantly different and all show similar performances. However, under certain
circumstances, half windows produce better views than the EWMA.
In a second part, we investigate the computation of the Value-at-Risk (VaR) within the

RiskMetricsTM framework. This method was first introduced in 1994 by JP Morgan and is
widely used among practitioners. In order to compute the VaR, the method uses two steps:
variance forecasting and then finding the quantile from the variance. The variance forecasting is
done by applying the EWMA on the squared returns of the time-series of interest. This process
is simple since the EWMA needs only one parameter. We test the substitution of the EWMA
with other one-parameter filters and assess the difference in performance over a whole portfolio
to see if notable improvements can be achieved. In this part, the EWMA turned out to be the
best performing filter, even though the other ones are not much worse.
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1. Introduction

In finance, moving averages are probably one of the most common technical analysis indicator
and has been widely used in the last decades. Their major application is to detect trends
in signals or compute signal statistics. From those trends, information about the market or
forecasts are often deduced. In this thesis, we investigate the substitution of the ubiquitously
used SMA and EWMA in finance with other moving averages.

1.1. Moving Averages

Theoretically, there is an infinity of possible moving averages, however practitioners almost ex-
clusively use the simple moving average (SMA) and the exponentially moving average (EWMA).
The SMA is the conventional form of a moving average and is defined as

yn =
1

N
(xn + xn−1 + ...+ xn−N+1) =

1

N

N∑
k=0

xn−k. (1.1)

where x is the input time-series and y the output time-series. This process is depicted in Figure
1.1 where one can see that the input (The Dow Jones Industrial Average Index settlement prices,
DJIA) is largely smoothed by the moving averages and thus reveals the trends of the input signal.
Moving averages also always lag the signal. This lag is roughly half the length of the moving
average considered and we see in Figure 1.1 that since the length is N = 100, the moving average
lags the signal by about 50 trading days.
Since the SMA weights all observations equally, it does not take in account the assumption

that some past observations are more relevant than others. This leads to weighted moving
averages where every considered observation is given a specific weight and are defined as

yn = h0xn + h1xn−1 + ...hNxn−N+1 =
N−1∑
k=0

hkxn−k (1.2)

where hk is the weight associated with the kth observation.
In order to be able to compare the time-series with the the result of the moving average, it is

important that the sum of hk equals one (
∑N

k=0 hk = 1) and that hk are non-negative. Moreover,
note that N can be taken in the interval [1,∞]. As we will se more formally later, h completely
describes a moving average and is called the impulse response. For the SMA, as all weights are
constant, we have an impulse response that is hk = 1

N for k ∈ [0, N − 1].
When it comes to do forecasting, a common property of the weighted moving averages is that

weights are decreasing as it is often assumed that recent observations are more relevant than
older ones to forecast near future values, i.e. hk are decreasing so that hk ≥ hk+1. A famous and
widely used example of the latter is the exponentially weighted moving average that is defined
as a weighted moving average with exponentially decreasing weights and is written as follows

yn = λyn−1 + (1 + λ)xn. (1.3)

6
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Figure 1.1.: Illustration of the Dow Jones Industrial Index Average (DJIA) settlement prices
compared with a 100-day simple moving average

Here λ is the decay rate and can be comprised between 0 and 1; note that a λ > 1 would lead
to a diverging process. For a fair comparison with the SMA, the relation N = (1 +λ)/(1−λ) is
used to convert the λ parameter to days (see Section 2.6.1 for the derivation). Unlike the SMA,
the EWMA comprises an autoregressive part and when expanded, it can also be written as

yn = (1− λ)
∞∑
k=0

λkxn−k. (1.4)

From Equation 1.4, we see that the weight associated with the n − kth observation is hk =
(1− λ)λk. The fact that weights decrease with observations allows the moving average to react
quicker than the SMA. This can be seen in Figure 1.1, where the EWMA outputs a signal that
is more sensible to local changes.
Nevertheless, the EWMA decays rapidly and is strictly convex; weights in the tail become

quickly insignificant in comparison with the first weights; this is illustrated in Figure 1.2. Hence,
in this thesis, we investigate new unconventional moving averages that have impulse responses
that are constantly decreasing but with the inclusion of an inflection point (see Figure 1.3).
These moving averages thus have an impulse response that is somehow flat in the beginning
(like the SMA) but still decreasing and then, after the inflection point, decaying faster, like
the EWMA. We also tested the so-called double and triple EWMA. Those moving averages are
EWMA filters in serial (two or three times). Finally, we also investigated the use of the resonator
which is a filter oscillating but nonetheless exponentially decaying.
Hence, in this thesis, we are interested to see if by substituting the commonly used EWMA

or SMA with other moving averages, their performances can be beaten in different financial
applications. In order to do this, in Chapter 2 we first briefly present some results of the digital
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Figure 1.3.: Typical example of a moving average with weights that are constantly decreasing
but with the inclusion of an inflection point (reverted logistically shaped). The
parameter is N = 20 day equivalent.

signal processing theory and introduce the new moving averages.
In order to be able to quantify the performances of the different moving averages, we backtested

them in two different financial environments where moving averages have been extensively used
in the last 30 years. In Chapter 3, we tested them in a simple trading framework and in Chapter
4, the EWMA is substituted with other moving averages to forecast the daily volatility and then
to compute the value-at-risk.

1.2. Trading Environment

In Chapter 3, we use moving averages to extract trends from time-series of daily traded securi-
ties. We do this on close prices for the last 10 years (2002 to 2012). After being coupled with a
trading rule, those trends recommend a short or long position that form a trading strategy. The
performances of the trading strategies are then measured using standard metrics and compared
to the performance of the EWMA and SMA. It is important to note that this kind of trading
strategy assumes that the market is not totally efficient and that, by filtering out high frequency
noise, real market information can be retrieved. This goes against the Efficient Market Hy-
pothesis that states that achieving constant excess returns based on historical information is not
possible. However, [Carhart, 1997] introduced the momentum factor implying that markets have
cycles as an intrinsic mechanism. Moreover [Clare et al., 2012] and [Hurst et al., 2012] showed
that trend-following strategies have better results than traditional buy and hold positions.
Substituting the EWMA or the SMA with other weighted moving averages did not seem very

well researched. Beside [Tillson] who used the same kind of approach but only backtested its
findings on the NASDAQ, no articles on the matter were found.
It seems, that in this field, most of the research literature rather focuses on the use of adaptive

filters such as the Kalman filter [Wesen et al., Nair et al., 2010, Beitollah Akbari Moghaddam and
Hassan Haleh] or machine learning techniques including neural networks, support vector machine
or the genetic algorithm [Yao and Tan, 2000, Wesen et al., DeBrunner and Charpentier, 2002,
Saito, 2007]. Additionally, some scholars also investigate the use of GARCH models to forecast
stock prices [Liu, 1999].

9



1.3. Value-at-Risk and the RiskMetricsTM Framework

In Chapter 4, we investigate the computation of the Value-at-Risk (VaR) within the RiskMetrics
framework TM[J.P. Morgan and Reuters, 1996]. In order to compute the VaR, the method uses
two steps: variance forecasting and then finding the quantile from the variance. The variance
forecasting is done by applying the EWMA on the squared returns of the time-series of interest.
Here again, we test the substitution of the EWMA with other one-parameter filters and assess
the difference in performance in terms of violations over a whole portfolio to see if notable
improvements can be achieved in the accuracy of the VaR value. We haven’t found any paper
treating the same subject. Scholars rather seem to focus on more advanced variance forecasting
methods such as GARCH [Engle, 1982] or multi-fractals [Boisbourdain, 2008].
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2. Moving averages and digital filters

It turns out that moving averages are a special case of digital filters, for which reasons we outline
in this chapter the main results of the digital signal processing theory. For seminal treatment
on the subject, the reader is invited to consult [Oppenheimer and Schafer, 1999].
A digital filter is a system that takes a discrete-time signal input x[n], applies different linear

mathematical operations to it and returns another discrete-time signal output y[n], see Figure
2.1 for a typical graphical representation. Most of the time, filters are designed in order to
extract specific aspects of the input (e.g. the low-frequency component of the input), to reduce
noise or unwanted spectral components, or compress the input signal. In this study, as we are
working with financial time-series, we will mostly be interested in extracting persistent features
of the input (e.g.strong market cycle signals) and reducing unwanted dynamics (e.g. noise) in
order to generate forecasting views.

2.1. LTI Systems

The action of smoothing time-series with moving averages , which weights are stationary, can be
seen as a special case of Linear Time Invariant Systems (LTI systems). Linear means that the
output behaves linearly with respect to the input, or mathematically if the system is denoted
by S{·} and the input and output discrete-time signals as x[n] and y[n]:

y[n] = S{a1x1[n] + a2x2[n]} = a1S{x1[n]}+ a2S{x2[n]} (2.1)

Time invariant means that the system’s behavior does not change with time or

y[n] = S{x[n]} ⇒ y[n− k] = S{x[n− k]}. (2.2)

Discrete LTI systems can always be described in terms of difference equations (weighted sum
of delayed outputs equaling a weighted sum of delayed inputs):

a0y[n] + a1y[n− 1] + ...+ aNy[n−N + 1] = b0x[n] + b1x[n− 1] + ...+ bMx[n−M + 1]. (2.3)

From Equation 2.3, one can see that (normalizing with a0 = 1) the output y[n] can always be

System: h[n]
y[n]x[n]

Figure 2.1.: Typical representation of a LTI system where the system S{·} is fed with the input
x[n] and the output is y[n]. The system is fully described by its impulse response
h[n].
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expressed as

y[n] = −
N−1∑
k=1

aky[n− k]︸ ︷︷ ︸
AR

+
M−1∑
k=0

bkx[n− k]︸ ︷︷ ︸
MA

(2.4)

This is the most straightforward way to compute the output of a filter. In this case the filter
is completely described by the coefficients ak and bk. The Matlab R© function filter uses this
algorithm to compute the output of a digital filter.

2.1.1. Factorization of an LTI System

Let the Kronecker’s delta be defined as

δ[n− k] := δnk :=

{
1 if n = k

0 otherwise
(2.5)

and ∗ be the discrete convolution operator so that

x[n] ∗ y[n] = y[n] ∗ x[n] :=

∞∑
k=−∞

y[k]x[k − n]. (2.6)

Using Equation 2.5 and 2.6, in Equation 2.3, the input x[n] and output y[n] can be factorized
so that

y[n] ∗

(
N−1∑
k=0

akδ[n− k]

)
= x[n] ∗

(
M−1∑
k=0

bkδ[n− k]

)
. (2.7)

This notation will turn out to be useful when used with the Z-transform which will be further
discussed in Section 2.2.

2.1.2. Impulse Response of a Filter

Every LTI digital filter has an associated impulse response h[n] that completely represents the
system and obeys the following equation

y[n] =
N−1∑
k=0

h[k]x[n− k] (2.8)

where N can be taken between 1 and ∞. At this point it is interesting to note that Equation
2.8 is actually the definition of a moving average if in addition

∑N−1
k=0 h[k] = 1 and h[k] ≥ 0 are

fulfilled.
Hence, moving averages are a subset of digital filters and the impulse response h[n] represents

the weights applied to the observations of the time-series considered. This also means that the
SMA and EWMA can be analyzed as digital filters and new moving averages can be designed
using this theory.
The impulse response of any digital filter can be derived from Equation 2.7 and the Z-

transform that we introduce later.
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2.1.3. Finite and Infinite Impulse Response

In Equation 2.4, the coefficients bk represent the moving average (MA) part and the ak coeffi-
cients the autoregressive part (AR) of the filter. As we already saw, the SMA only has an MA
part and thus its impulse response is simply represented by the coefficients bk. On the other
hand, the EWMA has an AR component but by expanding the AR term, one can rewrite it only
with MA coefficients but needs an infinite number of bk to recreate the AR effect as mentioned
in Chapter 1. In fact, all filters having an AR part can be rewritten only with an MA part but
in order to recreate the exact process an infinite number of MA coefficients is needed.
In signal processing, practitioners call filters that are made exclusively of an MA part Finite

Impulse Response (FIR) filters because their impulse response length is finite and filters with an
AR part Infinite Impulse Response (IIR) filters because their impulse response length is infinite.

2.2. Z-transform

In order to better understand the smoothing qualities of a digital filter it is useful to look
at it in the frequency domain. The Z-transform is conceptually equivalent to the Laplace
transform in discrete-time. It transforms a time-domain signal into a complex frequency-domain
representation. Let the operator Z{·} denote the Z-transform and thus

X(z) = Z{x[n]} =
∑
n∈Z

x[n]z−n. (2.9)

Using Equation 2.9, one can derive some interesting properties of the Z-transform. A short
list of useful ones is given below.

Z{a1x1[n] + a2x2[n]} = a1X1(z) + a2X2(z) (2.10)
Z{δ[n− k]} = z−k (2.11)
Z{x[−n]} = X(z−1). (2.12)

Among all the Z-transform’s properties, the most interesting one is probably the one that allows
to transform a convolution into a multiplication such that

Z{f [n] ∗ g[n]} = F (z)G(z). (2.13)

2.2.1. LTI System Representation in the Z-plane

Using the previous properties (Equation 2.13), one can easily write the Z-transform of Equation
2.7 as:

Y (z)
N∏
k=0

akz
−k = X(z)

M∏
k=0

bkz
−k (2.14)

which can in turn be rewritten

Y (z)

X(z)
= H(z) =

∏M
k=0 bkz

−k∏N
k=0 akz

−k
=
B(z)

A(z)
. (2.15)

In the Equation 2.15 H(z) is introduced. This quantity is called the transfer function because
it describes the mapping in transferring the filter input to its output. It is the Z-transform
of the impulse response. Note that in the time-domain the output of a filter is given by a
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convolution between the input x[n] and the impulse response h[n] (Equation 2.8), whereas, in
the Z-domain, it is given by a multiplication between the Z-transform of the input X(z) and
the transfer function H(z) so that Y (z) = H(z)X(z). This is a straightforward application of
Equation 2.13.
It is often convenient to represent H(z) in terms of its zeros and poles. Indeed, in Equation

2.15, the function A(z) and B(z) can be factorized as polynomials and thus H(z) can be fully
described by its zeros {zi|B(zi) = 0}, poles {pi|A(pi) = 0} and a multiplicative constant. Note
that FIR filters have in addition a trivial pole at z = 0, so that 1/B(z) = 0. As such, it is
common to represent a transfer function using a so-called zero-pole diagram where zeros are
commonly shown as "o" and poles as "x".
To illustrate this and the following concepts, we pick the example of a simple moving average

with N = 3. In this case, since b0 = b1 = b2 = 1
3 and a0 = 1 (FIR filter, no autoregressive

part), the impulse response is h[n] = 1
3(δ[n] + δ[n − 1] + δ[n − 2]). Using the properties of

the Z-transform, it is easy to find the transfer function H(z) = 1
3(1 + z−1 + z−2) which can

be factorized in H(z) = 1
3(1 − ej2/3πz−1)(1 − e−j2/3πz−1) = B(z) and thus its two zeros are

z1 = ej2/3π and z2 = z∗1 . The complete function H(z) is illustrated in Figure 2.2 where the effect
of the pole and zeros can be clearly seen; H(z1) = H(z2) = 0 and the function grows towards
infinity at the trivial pole H(p)

∣∣
p=0

. A more typical and understandable illustration of H(z) is
the illustration in Figure 2.3 where only the location of the zeros and poles are shown. As we
will see in more details in Section 2.3, in this case, the zeros dampen the frequency response for
high frequencies and thus the filter is a low-pass filter.
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Figure 2.2.: Illustration of H(z) = 1
3(1 + z−1 + z−2) in the Z-plane.

In order to retrieve the impulse response h[n] from the transfer response H(z), one can either
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Figure 2.3.: Example of a filter representation in the Z-plane with one trivial pole at p1 = 0 and
zeros at z1 = ej2/3π = −1

2 + j
√

3
2 and z2 = z∗1

use the inverse Z-transform (Out of the scope of this thesis, see Equation A.11) or look it up in
a table of pre-computed Z-transforms (see Table A.1) and use them along with the Z-transform
properties.

2.2.2. Normalizing Moving Averages

To conclude with this section, we recall that one of the two properties moving averages must
fulfill is that

∑N−1
k=0 h[k] = 1. That is the sum of the weights must equal one. This property

is sometimes tricky to test in the time domain but when converted to the Z-domain, it is
considerably simplified since it is equivalent to evaluate the Z-transform at z = 1, H(z)

∣∣
z=1

.
The proof can be obtained by simply writing the equation of the Z-transform and then eval-

uating at 1.
H(z) =

∑
k∈Z

h[k]z−k (2.16)

and
H(1) =

∑
k∈Z

h[k]. (2.17)
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Training Period and Cumulative Weights

The cumulative weight is a measure that indicates which fraction of weight is contained in the
N first points of the filter. We have

CWN =

∑N−1
k=0 hk
∞∑
k=0

hk︸ ︷︷ ︸
1

. (2.18)

This relation is especially important for IIR filters as they theoretically require an infinite number
of points to have CWN = 1 in all the other cases the sum of the weights will never equal one.
In [J.P. Morgan and Reuters, 1996], the authors introduce a tolerance measure Ω that measure
how much weight is being neglected when computing the average that is defined as

Ω = 1− CWN =

∞∑
n=N

hn. (2.19)

In the FIR case, Ω = 0 when the number of observations is at least the length of the filter
(length of the impulse response). Results become meaningful only after the Mth observation
as all the preceding outputs will have Ω < 1. However, for IIR filters, Ω = 0 can never be
achieved in practice but a reasonable threshold can be set (typically below 2%). Moreover, the
exact relation between N and Ω is different for every IIR filter. However, one can also plot the
cumulative impulse response of the filter and decide on a threshold from the plot.
Hence for any filter, the first output points are meaningless because it takes a certain amount

of points to reach a reasonable Ω. We call this period the training period or transient. A concrete
example will be given for the EWMA in Section 2.6.2.

2.2.3. Energy of a filter and System Stability

In signal processing, the energy of a filter is defined as the squared sum of the coefficients of the
impulse response1 or

E =

N−1∑
k∈Z

h[k]2. (2.20)

One can show with the help of Parseval’s theorem (Section A.1.5) that the energy is the same
in the time-domain and the frequency domain. Hence, we will use this relation to ensure that
the comparison of two different filters is fair by tuning their parameters so that their energy is
the same.
Moreover, the concept of energy is also used to describe the stability of a system. If the filter

fulfills E < ∞, the system is said to be BIBO stable. BIBO stable stands for Bounded-Input
Bounded-Output and is generally a desirable characteristic for any filter and assures it does not
diverge to infinity. In the Z-domain, the necessary and sufficient condition for BIBO stability
is that all poles lie within the unit circle on the Z-plane.

1Formally the energy is defined as
∑N−1
k=0 |h[k]|

2 but since here we consider only real valued impulse responses,
the absolute value condition is relaxed.

16



2.3. The Discrete Time Fourier Transform - DTFT

The Discrete Time Fourier Transform (DTFT) allows to visualize the frequency response of a
filter. It is the Z-transform evaluated on the unit circle, i.e. the associated DTFT of H(z) is
H(ejω). From this it follows that the DTFT is always 2π-periodic, i.e. H(ejω) = H(ejω+2π).
This is called the Discrete Time Fourier Transform (DTFT). In the same way that the Fourier
transform is a special case of the Laplace transform in the continuous world, the DTFT is a
special case of the Z-transform. Since the DTFT is a complex function, usually the amplitude
|H(ejω)| and the phase ∠H(ejω) are shown to describe the filter. See Figure 2.4 for an illustration
of the frequency response of the SMA example. The effect of the zeros shown in Figure 2.3 is
clearly marked by a strong decrease in frequency at the zero position. A pole on the unit circle
would do the opposite effect. The shape of the frequency response can be estimated from any
pole-zero diagram by traveling along the unit circle and looking at the surrounding poles and
zeros. If a zero is close to the current position, the value of |H(ejω)| will go down whereas if a
pole is in the surrounding, it will go up. Note that since for real valued h[n], the DTFT exhibits
an Hermitian symmetry (H(e−jω) = H(ejω)) we only show the frequency response from 0 to π
(or normalized from 0 to 1).

0 2/3 1
−120

−100

−80

−60

−40

−20

0

|H
(e
jω

)|
(d
B
)

(a) Amplitude frequency response

Figure 2.4.: DTFT representation of the SMA h[n] = 1
3(δ[n] + δ[n − 1] + δ[n − 2]). 2.4a is the

amplitude

2.3.1. System Representation

Three different system representations were introduced: the impulse response h[n], the transfer
function H(z) or the associated pole and zero diagram, and the frequency response through the
DTFT. Depending on the aim of the system, one might want to give h[n] or H(z) as a system
representation. For instance moving averages (see Section 2.5) are easy to understand when they
are given in the time-domain h[n] since one immediately understands the different importance of
past observations for the average. On the other hand frequency selection filters such as lowpass
filters can be understood in an easier way when they are given in the frequency domain H(z)
or H(ejω). When evaluating the stability of a system, it is convenient to look at the poles and
zeros of the filter on the Z-plane. In this last case, poles tell us at which frequencies the transfer
function goes to infinity and zeros where frequencies are damped. Moreover, a sufficient and
necessary condition for a system to be BIBO stable is to have all poles lying within the unit
circle.
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2.4. Physical Meaning of Filtering Financial Time-series

In this thesis, we focus only on financial time-series sampled at a daily frequency2. As mentioned
before, the aim of filtering is to extract relevant parts of the signal and remove high frequency
noise in order to retrieve the underlying trend of a security. In the example (Figure 2.4), since
the right part of the amplitude frequency response (note the decibel unit in the y-axis) has lower
values than the left part, we call it a low-pass filter as low frequencies pass through more easily
than higher frequencies (See Section A.1.6 for more details on the different types of filters). All
filters we present are low-pass filter since we are interested in filtering out the noise. In our case,
the highest possible frequency is the daily frequency and the simplest filter we could imagine is
an all-pass filter that would not alter the input. This filter is described as h[n] = δ[n] so that
y[n] = x[n] ∗ δ[n] = x[n]. Its Z-transform is H(z) = 1. Thus no frequency component is altered
and the output signal is the same as the input signal. However, if we consider the SMA with
N = 3 example again, the frequency response decreases in the end. The following relation holds
between the normalized frequency fn and the physical period frequency f (physical period T ):

f = 1/T = fnTs [1/trading day] (2.21)

where Ts is the sampling period (in our case trading days). Concretely, for our SMA example,
all normalized frequencies above fn = 2

3 are reduced by at least 20 dB (See Figure 2.4a) and
thus, physically, f = 2

3 [1/trading days] which means that we substantially decrease frequencies
that are higher than twice every three-days or 2

3 per day.

2We backtested financial time-series of daily close prices securities that are not traded every day but only on
trading days. However, for the sake of convenience we refer here to days.
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2.5. The SMA as a Finite Impulse Response (FIR) filter

In this section, we describe the SMA from a signal processing point of view and list some of its
properties.
As we have already seen before, the simple moving average is one of the simplest FIR filter.

It outputs the average of the last N samples of the input, or mathematically

y[n] =
1

N

N−1∑
k=0

x[n− k] (2.22)

The impulse response is thus

h[n] =
1

N

N−1∑
k=0

δ[n− k] =

{
1
N for n ∈ [0, N − 1]

0 otherwise
(2.23)

and its Z-transform is

H(z) =
1

N

N−1∑
k=0

z−k. (2.24)

Since
∑N−1

k=0 z−k can always be factorized as
∏N−1
k=0 (1 − bkz−1), it is easy to see that an SMA

filter has N zeros at bk. Moreover, like all FIR filters, the SMA has a trivial pole at p = 0.
The impulse and frequency responses are depicted on figure 2.5 and we see that it is a low pass
filter with the number of lobes being equal to half the number of zeros. When looking at the
zeros and poles in the Z-plane, Figure 2.5c, there is one trivial pole in the center and N zeros
uniformly distributed, but no zero at z = 1.

2.5.1. Parameter of the SMA

The SMA has only one parameter, N , indicating the length of the impulse response. So, when
filtering daily traded time-series we refer to the parameter of the SMA as a length in days. Since,
this parameter is easily understandable, in this thesis, we use it as a benchmark and tune all
other filters so that we can also express them in terms of days. As explained in Section 2.2.3,
we use the concept of energy to do so. Hence, for the SMA, the energy is

ESMA =
N−1∑
k=0

h[n]2 =
N−1∑
k=0

1

N2
=

1

N
. (2.25)

The energy of the SMA is used as a benchmark, so that we can refer to the SMA parameter N
for every filters and have a common measure when it comes to compare filters.

2.6. Infinite Impulse Response (IIR) filters

As we outlined before, IIR filters have an impulse response with an infinite support. In the next
section, we derive the EWMA, Double EWMA and Triple EWMA formally and introduce an
oscillating digital filter, the resonator, that we also investigate in our trading strategies.
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Figure 2.5.: Properties of the simple moving average (SMA) filter (N = 15 days)
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21



2.6.1. The Exponentially Weighted Moving Average as an IIR filter

The Exponentially weighted moving average (EWMA or EMA) is a moving average with weights
that are exponentially decreasing and is described as

yn = (1− λ)xn + λyn−1 (2.26)
= (1− λ)

[
xn + λxn−1 + λ2xn−2 + ...

]
(2.27)

= (1− λ)
∞∑
k=0

λkxn−k (2.28)

This filter is widely used by traders to smooth time-series signals allowing them to identify
trends in noisy signals. It is also commonly used to predict variance over time in function of
return (see Chapter 4).
In the field of finance, mostly people think of the EWMA only in the time-domain. We provide

here another way of deriving it from a signal processing point of view.
The EWMA is the simplest IIR filter one can design. It has only one real pole, λ, and thus

only one parameter. In the Z-domain, one can easily write the corresponding transfer function
as

H(z) =
A

1− λz−1
. (2.29)

where λ is the pole location and A a constant to be determined.
Since, we are interested in moving averages, the filter needs to be normalized so that

∑∞
i=0 hi = 1

or H(1) = 1 which leads to A = 1− λ and hence

H(z) =
Y (z)

X(z)
=

1− λ
1− λz−1

. (2.30)

Translating Equation 2.30 in the time domain using the tools explained in the previous sections
gives

y[n] ∗ (δ[n]− λδ[n− 1]) = (1− λ)x[n] (2.31)
y[n] = (1− λ)x[n] + λy[n− 1] (2.32)

which is exactly the same as Equation 2.26.
From Equation 2.32 we can also get the impulse response in the time domain (from Table

A.1, we know 1
1−az−1 ⇔ anu[n]) and thus

h[n] = (1− λ)λn ∀n ≥ 0 (2.33)

which is the same as unwrapping Equation 2.26.
When looking at its frequency response (Figure 2.6b), we see that it is much smoother than

the one achieved with the SMA. This is mostly due to the introduction of the autoregressive
part.

2.6.2. Cumulative Weights

In the case of the EWMA, the cumulative weight function (see Section 2.2.2) is defined as

CW (M,λ) =

∑M−1
i=0 (1− λ)λi

∞∑
i=0

(1− λ)λi︸ ︷︷ ︸
=1

= (1− λ)
1− λM

1− λ
= 1− λM . (2.34)
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Figure 2.7.: Illustration of the transient for the EWMA with parameters Ω = 3%, λ = .94
and thus M = 57. These values are the ones recommended by RiskMetricsTM to
compute the daily VaR.

Consequently, Ω = λM and thus one can get the minimum required number of days M for a
required tolerance Ω by rewriting the previous equation as

M =
log (Ω)

log (λ)
. (2.35)

As an example for a λ = .94 and a tolerance of Ω = 3%, the EWMA must be fed with at least
M = 57 observations. In other words, the weights represented by the data-points beyond n = 57
only represent 3% of the total weights of the filter. A graphical example is given in Figure 2.7.

2.6.3. Parameter λ

The EWMA has only one parameter (λ) which makes it easy to use. λ defines the position of the
only pole of the filter. The closer it is to 1, the smoother is the impulse response as it considers
many observations. However, in the frequency domain it is the opposite: the frequency response
gets sharper when λ decreases. In this case, it is because higher frequencies are filtered out.
Hence, the larger is λ the more high frequencies are filtered out, see Figure 2.8. Note that λ
can only be chosen between 0 and 1 since a λ ≥ 1 leads to a filter that is not BIBO stable and
λ < 0 yields a high-pass filter, which in this case is irrelevant.
Practitioners rather describe it in terms of number of days N so that it can easily be compared

to the SMA. As for the SMA, a large N will produce a smoother curve as a small N ; since at
each step more data-points are taken in account. The way N is derived from λ is as a mean
of comparison with the SMA. Indeed, if we compare the energy of the EWMA and the energy
of the SMA they sum up to the same leaving us with the relation λ = 1 − 2/(N + 1). For the
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EWMA, we have

EEWMA =
∞∑
i=0

(
(1− λ)λi

)2
= (1− λ)2

∞∑
i=0

λ2i

= (1− λ)2 1

1− λ2

=
1− λ
1 + λ

. (2.36)

Hence, if we set EEWMA = ESMA = 1/M , we find

λ =
N − 1

N + 1
(2.37)

⇔

N =
1 + λ

1− λ
.

The relation is depicted on figure 2.9. Before going further, it is useful to consider the following:
ln (z) ≈ 2 z−1

z+1
3 which allows us to rewrite Equation 2.37 as

N ≈ − 2

ln (λ)
. (2.39)

which can be seen as the half-life of EWMA.
Thus, in terms of tolerance, we have

Ω = λM = λ−2/ lnλ = e−2 ≈ 13.53% (2.40)

This means that when using Equation 2.37 which assumes a fair comparison between the EWMA
and the SMA in terms of energy, one puts a little bit more than 86% of the weights on the N last
values of the time-series and that the rest of the values of the time-series represents less than
1 − .8647 ≈ 13.5%. It is important here to note this does not mean we neglect each time 13%
of the weights but rather that for an SMA of length N , the corresponding EWMA in terms of
energy will have a total sum of weights of 1−e−2 when the SMA finishes. But the remaining will
be covered with other observations (not used by the SMA). Nevertheless, that does not prevent
from having enough data points so as to avoid the transient effect.

2.6.4. Double Exponentially Weighted Moving Average

The Double Exponentially Weighted Moving Average (DEWMA) is described as follows{
y[n] = (1− λ)x[n] + λy[n− 1]

b[n] = (1− λ)y[n] + λb[n− 1]
(2.41)

3ln z ≈ 2 z−1
z+1

is the first order of the following relation:

ln z = 2arctanh

(
z − 1

z + 1

)
= 2

∞∑
n=0

1

2n+ 1

(
z − 1

z + 1

)2n+1

. (2.38)

See [Abramowitz and Stegun, 1964] for more details.
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Figure 2.10.: Properties of the double exponentially weighted moving average (DEWMA) filter
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which in the Z-domain yields{
Y (z) = (1− λ)X(z) + λz−1Y (z)

B(z) = (1− λ)Y (z) + λz−1B(z).
(2.42)

The above equations simply represents two EWMA filters in series; x[n] being the input, y[n]
the output of the first EWMA filter and then inputs into a second EWMA filters with same
characteristics (same4 λ) which gives the output b[n].
If we solve the system for B(z) in function of X(z), we get

HDEWMA(z) =
B(z)

X(z)
=

(1− λ)2

(1− λz−1)2
= HEWMA(z)2. (2.43)

From this, we see two things. The DEWMA is a filter with a double real pole at z = λ and it
is the square of the frequency response of the EWMA which means that it is like having two
EWMA filters in series.
In the time-domain one can write

h[n](DEWMA) = h[n](EWMA) ∗ h[n](EWMA). (2.44)

In terms of frequency, the DEWMA has better smoothing qualities. Indeed in Figure 2.10b,
the frequencies decrease twice as fast as for the EWMA (Figure 2.6b). However, this at the
cost of an added lag. When looking at the impulse responses of the two filters, one can see that
the EWMA responds much quicker than the DEWMA; the EWMA is constantly decreasing
whereas the DEWMA has a peak that is lagged. This is a typical tradeoff encountered in signal
processing where a better smoothing is achieved at the extent of lag.

2.6.5. Triple Exponentially Weighted Moving Average

The triple EWMA is three EWMA filters in parallel and thus

h[n](TEWMA) = h[n](EWMA) ∗ h[n](EWMA) ∗ h[n](EWMA). (2.45)

Here, the smoothing qualities are even greater than the double EWMA but the lag is also greater,
Figure 2.11.
The reason why we test those three similar moving average, is to see if there are significant

improvement in results when the decay in frequency is twice, three times faster than with the
EWMA. This idea of putting EWMA in serial can be generalized to the n-EWMA, see Section
A.2.4.

2.6.6. The Resonator - 2 poles IIR filter

The resonator is a generalization of the double EWMA as the two poles of the DEWMA are
moved apart. So instead of having p1 = p2, it has p1 = p∗2 and it needs two parameters to be
described. r, the distance from the center to the poles and θ the angle from the origin to the

4Some authors introduce the DEWMA with two different parameters, λ1 and λ2, however we prefer to keep
the number of parameters as low as possible. Nevertheless, a generalization with different parameters is
straightforward.
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(λ = 0.95)
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Figure 2.12.: Properties of the resonator filter (r = .9, ω = π/3)
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poles. If θ = 0, the resonator becomes the double EWMA. Since we know the filter has two
conjugated poles, it is easy to derive the transfer function

H(z) =
A

(1− pz−1)(1− p∗z−1)

=
A

1− 2<{p}z−1 + |p|z−2
(2.46)

=
A

(1− rejθz−1)(1− re−jθz−1)

=
A

1− 2r cos (θ)z−1 + r2z−2
(2.47)

To find the value of A, the filter is normalized so that the sum of the coefficients of the impulse
response sums to one.

H(1) =
A

1− 2r cos θ + r2
= 1 (2.48)

so that A = 1− 2r cos θ + r2 and hence

H(z) =
Y (z)

X(z)
=

1− 2r cos (θ) + r2

1− 2r cos (θ)z−1 + r2z−2
. (2.49)

From this the DTFT is

H(ejω) =
A

(1− rej(ω0−ω))(1− rej(−ω0−ω))
. (2.50)

Finally, using Equation 2.49 and the inverse Z-transform5 to get the impulse response

h[n] =
A

r sin (ω0)
rn sin (ω0n) ∀n ≥ 0. (2.52)

The impulse response is represented in Figure 2.12a. We see that oscillations were introduced,
so that the condition h[n] ≥ 0 is no longer fulfilled and thus this filter is not a moving average.
Since this filter is only used in the trading part, it is acceptable to use it even if it is not a moving
average since only the sign of the difference of two resonator filters will be taken in account.
Hence the normalization, is actually also not relevant since it gets cancelled out anyway.
In the frequency domain, the filter no longer has a constantly decreasing frequency response

but a peak at θ. This is actually a shifted version of the EWMA frequency response. Thus the
resonator is no longer a low-pass filter but a bandpass filter, i.e. only a certain frequency range
passes without any problem. The idea behind using this filter is to seek the good frequency
range that represents the underlying trend of the examined time-series whereas for all the other
filter we tune only for the good cutoff frequency.

5From Table A.1, one can use the relation

an cos (ω0n)u[n]⇔
a sin (ω0)

1− 2a cos (ω0)z−1 + a2z−1
(2.51)
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2.7. Windows

In signal processing, windows are functions that have finite support that are generally used to
truncate IIR filters into FIR filters. It does so by multiplying the impulse response of an IIR
filter, h[n], with a window of size M , w[n]. The new FIR filter is thus

h[n]FIR = w[n]h[n]. (2.53)

Since the equivalent of a multiplication in the z-domain is a convolution, the resulting frequency
response is

HFIR(z) =
1

2π
W (z) ∗H(z). (2.54)

2.7.1. Rectangular Window

The simplest window is the rectangular window (also called boxcar) and has only coefficients
valued at one:

w[n] =

{
1 0 ≤ n ≤M − 1

0 else
. (2.55)

The windowed impulse response is then left with either the same coefficients as the initial
impulse response or zero. The problem with this approach is that the windowed impulse response
almost inevitably has jumps and those jumps are badly replicated in the frequency domain.
The reason for this is that the frequency response of HFIR is the superposition of M different

sine functions (M being the length of the window wn) and – as a result of the Fourier transform
– the longer is M , the less oscillations are introduced in HFIR. Those oscillations that appear
at sharp edges are called ripples and the effect is called the Gibbs phenomenon (Figure 2.13). In
order to try to diminish the effect of ripples, practitioners have come up with other windows that
minimize it. One of the tricks is to gradually decrease the weights on each side of the window
so that the resulting impulse response does not include big jumps and hence reduce the Gibbs
phenomenon in the frequency domain.
However, when designing a window there is always a trade-off between, what is called, the

passband ripple, the transition band roll-off and the stopband attenuation ; this is shown in
Figure 2.14. Ideally, in the frequency domain, the window should look like a dirac so that
the convolution of the window with filter results in the exact same filter. This is however not
possible with a finite length window, so that good window minimize the width of the main lobe
and maximize the difference between the height of the main lobe and the adjacent ones. Some
windows have become famous in the signal processing field as they minimize some unwanted
effect of the Gibbs phenomenon. For instance the Hann window has very low aliasing at the
extent of having a wider main lobe. The Hamming window is designed so as to minimize the
height of the nearest lobe. The Blackman window places zeros at third and fourth sidelobes. In
the Kaiser function, the parameter β determines the tradeoff between the main lobe width and
the side lobe level.

2.7.2. Using Windows as Smoothing Moving Averages

The simplest window, the rectangular or boxcar window, is very similar to the simple moving
average. Its impulse response hn is almost the same as the one of the rectangular window.
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Table 2.2.: Table listing the half-windows we test against the SMA and EWMA later in this
study

In fact, the impulse response of the SMA h
(SMA)
n is simply the rectangular window’s impulse

response wn divided by its parameter M (length of the window) so that

h[n](SMA) = w[n]/M. (2.56)

One can generalize the previous consideration for all windows as

h[n](WMA) =
1∑M−1

k=0 w[k]
w[n]. (2.57)

As it can be seen from Table 2.1, all windows can also be seen as low-pass filters with one
parameters (except Kaiser, that has got two parameters). Note that in this case, windows are
not used in the window sense but as filters; i.e. in the time-domain a convolution is applied
between the input and the input time-series and the window function y[n] = w[n] ∗ x[n] (and
not a multiplication as it is generally thought for window functions).

2.7.3. Half-windows

In this study, we try to beat the commonly used EWMA and SMA in finance when predicting
future stock direction or risk.
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One idea is to substitute the exponentially decaying impulse response of the EWMA by a
filter that has a less abrupt decay. However, it is desirable to have a filter with weights that
are constantly decreasing to fulfill the assumption that recent observations are more important
than old observations. In addition, we want something that is more sensible to the influence
of time than the SMA; the SMA applies the same weights to all observations thus not making
any difference between events that happened a long time ago and recent events. Hence, we
think that reverted logistic-shaped impulse responses can be good candidates since they are
constantly decreasing but have an inflection point; their impulse responses is first concave and
after the inflection point convex. With this property they share desirable characteristics of
both the EWMA and of the SMA. To avoid over-fitting (see Section 3.3.5), we are interested in
investigating only one-parameter filters.
Since the right half of windows introduced earlier all are logistically shaped and have only

one parameter, we construct half windows as our logistically shaped filters. We define a half-
window as a function defined by a window taken only from its highest to its lowest point, thus
constructing a reverted logistic shaped impulse response. The ones that are investigated later
in this study are presented in Table 2.2.

2.7.4. Comparison of half-window filters with the SMA

As we have already pointed before when comparing the EWMA and SMA (see Section 2.6.3),
the filter energy is often used to compare two different filters. This ensure that both in the time
and frequency domain the amount of energy is the same for the two compared filters.
Hence, we will calibrate the half-window filters so that the energy value evaluated at the

length of the SMA equals the one of the filter of interest. We demonstrated in Section 2.5.1 that
the energy of an SMA filter of length N is E = 1/N . Thus we need to calibrate our filters, h,
so that

M−1∑
i=0

h[k]2 =
1

N
. (2.58)

The calibrated moving averages are depicted in Figure 2.15 for a value of N = 32 and an
associated energy of E = 1/N . We immediately notice that all the windows look very much
alike and it is hard to differentiate them. This suggests that results should be very similar.
Moreover, note that the SMA stops well before the other filters and that EWMA keeps on
forever since (IIR filter). In this study, when talking about half-windows, M represents the
length of the window, i.e. number of weights that are non-zero valued and N represents the
length in day when the filter has been calibrated with the SMA.
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Figure 2.13.: Illustration of input signal windowed with a small and a large Boxcar window.
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3. Trading Strategies using Moving
Averages
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Figure 3.1.: Illustration of trading rule on Coffee (KC1) for a period of 4 years. Note the transient
period for which nothing can be computed as Ω has not yet reached a value close
enough to zero.

Moving averages and especially the simple and exponentially weighted moving averages (SMA
and EWMA) have been used for over 30 years to extract trends from price time-series and create
investment strategies, [Thomas et al., 2012, Hurst et al., 2012]. In this part of the study, we
investigate the forecasting power of those two moving averages and compare it to other moving
averages that – to our knowledge – have not been used in finance yet. Specifically, we want to
see if the half windows, the double and triple EWMA, and the resonator introduced in Chapter
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2 can outperform the EWMA within a simple trading framework.
Applying a moving average on a time-series outputs a smoothed version of the input and allows

to extract and visualize trends of the underlying time-series. From a signal processing point of
view and as explained in the previous chapter, a moving average is a low pass filter and thus
removes high frequencies from the input signal. The level of smoothing is mostly determined by
the length of the impulse response but also the values of the coefficients of the impulse response;
e.g. an SMA compared to a decreasing moving average with same length outputs a smoother
signal. To have a precise idea of the smoothing qualities of a moving average, one can look at
the frequency response of the filter.
In practice, once the signal is filtered, the trends are extrapolated to infer future information

about the market such as future price direction. It is generally accepted that if the smoothed
signal is lower than the price for a certain time, the market is in a positive trend; the current
price is constantly higher than the average of past prices thus suggesting that it will keep on
rising. The opposite is true for downtrends. By taking advantage of this effect, one can design
automated trading strategies.
In this chapter, we explain the different trading strategies we used as well as the structure

and the results of the tests. Technical details about the backtesting framework are given in the
appendix.

3.1. Trading Strategies

A trading strategy is a quantized signal that tells the trader (or the trading algorithm) to perform
a certain action.
A trading strategy algorithm takes as input the time and all sorts of indicators. Those inputs

can be multiple and very sophisticated (e.g. price, moving average, risk indicator, performance of
similar securities, weather forecasts, ...). The output is a discrete number that is associated with
a trading action (i.e. strong/moderate long position, strong/moderate short position, unwind,
stay out of the market etc...). For the sake of simplicity, we will here only use three actions:
long, short and out of the market positions.
Let the trading strategy signal be defined by the signal s : N → { − 1, 0, 1}, the input being

the time and the output the action for the trading algorithm to execute [Yao and Tan, 2000].
We define the following output actions:

s[n] =


1 ⇒ long position
0 ⇒ stay out of market
−1 ⇒ short position.

(3.1)

With this setting, the position is held as long as s[n] = s[n− 1]. If s[n] 6= s[n− 1], the position
is closed and a new one is opened depending on the new value of s[n], see Figure 3.1.
Generically, a trading strategy looks like

s[n+ 1] = f [n, filtered signals, indicators] (3.2)

Note that the incrementation of s is shifted by one as the trading strategy is associated with
the next return generated by the market. f is a trading rule and maps the different indicators
into a trading action. They are detailed in the next section.
Since the main part of this work is to compare different filters against the EWMA, the trading

strategy should not be too complex as it could be misleading to draw conclusions regarding the
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Figure 3.2.: Coffee (KC1) times series and associated RSI indicator

(a) Price time series for Coffee between 2011 and 2012
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(b) RSI indicator with N = 14 and upper and lower bound set to 30 and 70%.

different performances of the filters. Consequently, only relatively simple trading strategies with
as few parameters as possible were designed to reduce the risk of testing the forecasting quality
of the trading strategy rather than the effect of the filters (see also Section 3.3.5). Moreover, it
is very difficult to measure to which extent the strategy influences the performance of the filter
or to determine if the strategy is independent of the different filtered signals it takes as input.

3.1.1. Relative Strength Index (RSI)

As shown in Equation 3.2, trading rules can take any kind of indicators. To have some more
sophisticated trading rules, in addition to filtered signals, we also integrated the relative strength
index (RSI) indicator in some of the trading rules.
The RSI is a momentum oscillator indicator [Wilder, 1978] that tells if a security is overbought

or oversold. As such it tries to anticipate a market turn. The RSI is defined between 0 and 100%
with a low and high threshold. When the RSI is above the high (low) threshold, the security is
said to be overbought (oversold). This process is depicted in Figure 3.2 where the area in grey
(pink) indicates that the security is overbought (oversold) and thus that it should go down (up).
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Computation of the RSI In order to compute the RSI, first a difference vector must be created
(difference between two consecutive prices P )

Dn = P [n]− P [n− 1]. (3.3)

Then upticks and downticks are defined as U and D or

Un = 1{Dn}Dn (3.4)
Dn = 1{Dn}Dn (3.5)

(3.6)

where 1{·} is the Heaviside function1. The Relative strength (RS) can then be computed as

RS[n] =
(h(EWMAN ) ∗ U)[n]

(h(EWMAN ) ∗D)[n]
(3.7)

where h(EWMAN ) is the computation of the EWMA with parameter N in days on the vector U .
In this study all tests were performed with N = 14 days and 0.3 and 0.7 are chosen as low and
high thresholds as recommended by [Stevens, 2002].
Finally, the Relative Strength Index (RSI) is defined as

RSI[n] = 1− 1

1 +RS[n]
. (3.8)

3.1.2. Trading Rules

Trading rules take different signals as input and output a trading action. In this paper, as
trading strategy is not the main focus, we investigate only two inputs: filtered price and RSI
(see Section 3.1.1). Let P [n] denote the price at time n and P̂ [n] the associated output of the
moving average at time n.

Buy and Hold Position A buy and hold position means having a long position throughout the
whole sample. In this case, s[n] = 1 ∀n.

Simple Trading Rule on Prices One of the simplest trading rule one can think of using moving
averages is a simple trend-following algorithm using the price time-series and a moving average
applied to it. A trend-follower on prices means that when the price is above (below) the moving
average (that is always lagging) the market is rising (declining) and thus one should keep a long
(short) position. Mathematically, this can be described as:

Trading strategy = s[n+ 1] = sign(P [n]− P̂ [n]) =


1 long
0 stay out of market
−1 short.

(3.9)

This strategy has two parameters: the moving average type (SMA, EWMA, something else)
and the length of the moving average. The length of the moving average is generally taken
between 50 and 200 days. Nevertheless, the optimal parameter value is not constant over
different time-series and changes over time for the same time-series as markets exhibit different
regimes and change unexpectedly (See Section 3.3.5) and it usually accepted that no magic
parameter value produce the best performance.

1 1{x} =

{
1 if x ≤ 0

0 else
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Crossing of two different moving averages

In this study, we use a slightly more elaborated version of the previous rule as a basis for the
trading framework. According to [Brock et al., 1992] and [Fraenkle and Svetlozar, 2009], this
rule has been widely used in the last 30 years. Instead of comparing the moving average directly
to the value of the price, we compare it to a short moving average, called the lead. The length,
Nlead, of the short moving average is typically between 1 and 10 days. The other moving average
is called the lag and its length Nlag is taken between 50 and 200 days. Note that when the length
of the lead is Nlead = 1, we fall back on the previous trading strategy.
So the price is filtered twice, once with the long moving average and once with the short

moving average. The trader interprets the moment when the lead crosses the lag as a signal. To
avoid generating trading signals in a sideways market, a tolerance band b ∈ (0, 1) is sometimes
added around the lag so as to avoid trading too often and accumulating trading costs. When
the lead is in this region, no trading signal is generated. Hence if s denotes our trading strategy
where +1 means holding a long position and −1 holding a short position, we have

s[n+ 1] =


1, if P̂(lead)[n] > (1 + b)P̂(lag)[n]

−1, if P̂(lead)[n] < (1− b)P̂(lag)[n]

0, else.
(3.10)

This is depicted in Figure 3.1 where we see the trading strategy being triggered by the crossing
of the long and short moving average outside of the tolerance band.
It is important to note that moving averages can only be compared once they have reached

an acceptable tolerance level Ω. As an illustration, see the blue region in Figure 3.1 for which
nothing can be computed since the lag is in its transient (also called warm-up) period. In this
work, we have set the same transient period for all tests so that the longest moving averages
investigated has Ω ≈ 2% when the trading rule takes effect.

Mean Reversion

Until now, only trend-following strategies have been discussed. However, some markets exhibit
a mean reverting behavior which is when the time-series tends to converge to its mean [Miller
et al., 1994].
The associated rule is basically the inverse of a trend following rule, stating that if the price

is above the moving average it will eventually converge back to it:

s[n+ 1] =


1, if P̂(lead)[n] < (1 + b)P̂(lag)[n]

−1, if P̂(lead)[n] > (1− b)P̂(lag)[n]

0, else.
(3.11)

Trading Rule Using the RSI We designed two trading rules using the RSI and both can be
applied on top of one of the moving average trading rules denoted by s.
RSI trading rule type I The first one tries to prevent taking any position when the RSI

indicates that the underlying is either overbought or oversold. The rationale behind is that
moving averages are lagging and thus often indicate the wrong direction when there is an upturn
or a downturn.

s̃[n+ 1] =

{
0, if RSI[n] /∈ [0.3, 0.7]

s[n+ 1] else.
(3.12)
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RSI trading rule type II The second one relies solely on the RSI indicator when it is out of the
confidence interval [0.3; 0.7] which means that when the signal indicates that the underlying is
oversold, the trading rule tells to go long and vice versa, else the moving average rule is followed.

s̃[n+ 1] =


1, if RSI[n] < .3

−1, if RSI[n] > .7

s[n+ 1] else.
(3.13)

3.2. Measuring Performance

Since we are interested in assessing the performance of the windows and double EWMA against
the EWMA and SMA benchmarks, we need to be able to measure their performances in a
fair way and then compare them with each other. We present here the different performance
indicators and statistical tests we use throughout the experiments. First, we define

3.2.1. Return computation

In this part of the study, returns, r, are always computed as

r[n] =
P [n]

P [n− 1]
− 1. (3.14)

3.2.2. Computing the profit and loss

We call the profit or loss of a trading strategy at time n, taken return t[n]. We define taken
returns, t, as returns taken at each timestep when the trading strategy is followed. Let t[n]
denote the taken returns, s[n] the trading strategy at time n and c the transaction cost (see
3.3.2). We have

t[n] = s[n]r[n]−
∣∣s[n]− s[n− 1]

∣∣c. (3.15)

This means that when the trading strategy tells the algorithm to take a long position (s[n] =
1), the taken return equals the associated return (i.e t[n] = r[n]). This is what happens for
a buy and hold strategy. When the trading strategy tells to take a short position, then the
taken return is minus the return of the underlying security and thus t[n] = −r[n]. When the
trading strategy changes position (e.g. from long to short or short to out of the market), a
transaction cost occurs to account for the bid-ask spread and the broker fee. Transaction costs
are always positive, hence the absolute value and when the trading strategy goes from a long
to a short position – closing and then opening a position – the transaction cost occurs twice.
Note that when transaction cost are neglected, taken returns obtained with a trend-following
strategy are the negative of those following a mean reversion strategy. This no longer applies
when transaction costs are included.

3.2.3. Sharpe Ratio

The Sharpe ratio is a widely used indicator in finance to measure the performance of stocks or
funds, [Lo, 2002], and is defined as

S =
E(r[n]− rf )

σr[n]−rf
(3.16)
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where r[n] are the returns associated with the security or fund of interest and rf the risk-free
interest rate. For our use, we define it as

S =
r

sr
(3.17)

where r is the mean of the taken daily returns, sr the standard deviation of daily returns2

and rf is set to zero. In this chapter, we computed the Sharpe ratio annualized which is
Sannualized =

√
255S. As a rule of thumb when evaluating trading strategies, it is generally

accepted than an annualized Sharpe ratio higher than one is considered as good [Chan, 2009a].

3.2.4. Directional quality

The directional quality Qd, also called success rate, computes the number of positive taken
returns over the number of taken returns that are different from zero or

Qd =

∑N
n=1 1{t[n] > 0}∑N
n=1 1{t[n] 6= 0}

(3.18)

where 1{·} is the Heaviside function , r[n] are the actual returns of the time-series and t[n] the
taken returns. This measure is defined between 0 and 1. A Qd of one means that the strategy is
perfect and that it always wins. Note that following the way we defined the taken returns t[n],
transaction costs are included in this measure.
An unbiased random strategy, such as predicting the outcome of a fair toss of a coin, would

eventually lead to a Qd = 0.5. Thus when elaborating a trading strategy, it is important to
make sure that it is significantly higher than this level.

Hypothesis testing and Confidence Interval for the Qd

The directional quality means that at every timestep there is an estimated probability of Qd
that the prediction is in the right direction. Hence, if we denote X by the number of correct sign
predictions (

∑n
i=1 1{t[n]r[n]}) then X ∼ B(N, p) where B is a binomial, N the length of the

sample and p is the directional quality. For an N that is large enough, the de Moivre–Laplace
theorem can be applied and the approximation X ∼ N (Np,Np(1−p)) is reasonable. The latter
can be normalized3 , so that

q =
X

n
∼ N

(
p,

1

n
p(1− p)

)
(3.19)

It follows that an approximate confidence interval for the directional quality is

I =

[
−∞; p+

√
p(1− p)

n
Φ−1(1− α)

]
(3.20)

2sr =
√

1
N−1

∑N
i=1(ri − r)2

3 We have

E
(
X

n

)
= 1

n
E(X) = np

n
= p

V ar

(
X

n

)
= 1

n2 V ar(X) = np(1−p)
n2 =

1

n
p(1− p).
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Figure 3.3.: Illustration of a hypothetical trading strategy (blue) and an associated random
strategy (red).

where Φ(z) = P(Z ≤ z), Z ∼ N (0, 1) and p is set at the level we significantly want to beat. As
we are interested in having Qd > .5, we have (p = 0.5):

I =

[
−∞;

1

2

(
1 +

1√
n

Φ−1(1− α)

)]
. (3.21)

If the estimated Qd of a trading strategy lies outside of I, one can conclude that the Qd
significantly differs from Qd = 1

2 at an α level.
In the tests, time-series were taken on 10 years, which is about 2550 trading days and thus –

according to the previous development – all Qd that are below ≈ 51.7% can not be rejected at
the 95% confidence level.

3.2.5. Random Strategies

In order to assess the performance of the strategies in a fair way, they are compared to random
strategies. Random strategies are formed so that they are as similar to the observed strategy as
possible. To do this, the ts vector is shuffled to produce a random strategy t̃si. The ts vector is
made of blocks that either indicates to take a long, short or out-of-the-market position. The rule
we apply when creating a random strategy, is to shuffle the blocks and randomly re-assign them
a position. However, the ratio of short to long positions is to remain constant. An example is
shown in Figure 3.3.

Qd Percentile

For each tested strategy, 5, 000 random strategies and their associated Q̂di are computed. If
FX(x) denotes the distribution of Q̂d, one can find the percentile p of the Qd of the trading
strategy so that

p = inf{FX(x) : FX(x) ≥ Qd}. (3.22)

p is a percentile indicating how well the strategy performs in comparison with all the associated
random strategies. Typically, a good strategy has a p that is close to one, meaning that the
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investigated strategy performs better than most of the associated random strategies. A p =
0 would mean that all associated random strategies performed better than the investigated
strategy.

3.2.6. Statistical Tests

In order to statistically test if one class of results is significantly better or worse than an other
one, we used a variant of a two-sample t-test, the Welch test [WELCH, 1947].
The Welch test is a generalization of the t-test for two samples having possibly different

variances. The statistic is defined as

t =
x1 − x2√

s2
1/N + s2

2/N
(3.23)

and t follows a t-distribution with a degree of freedom that is approximated by the Welch-
Satterhwaite equation

ν =

(
s21
N1

+
s22
N2

)2

s41
N2

1 ·(N1−1)
+

s42
N2

2 ·(N2−1)

. (3.24)

This statistic allows to test the hypothesis H0 : µ1 = µ2 against Ha : µ1 < µ2 or Hb : µ1 > µ2

and we use it to test if the performance of a filter is different from the benchmark filter (the
EWMA).

3.3. Backtesting Methodology

In order to be able to assess the different trading strategies and filters presented in the previous
sections, tests were conducted on a portfolio of over 100 securities containing different asset
classes (equities, currencies and commodities) and spanning 10 years (some are shorter if they
had their IPO after 2002 or if they went bankrupt, delisted, merged or acquired between 2002
and 2012). Tests were conducted on daily close prices. More details about the portfolio are
given in the appendix in Table A.4.

3.3.1. Chosen Trading Rules

We tested five different trading rules. They are shown in Table 3.1. Three are trend-following and
two are mean-reversion strategies and they are combined with the RSI trading rules discussed
in Section 3.1.1.

3.3.2. Trading Costs

Every time one enters or leaves a position on the market, a trading cost is lost. This trading cost
is usually made of two parts: the bid-ask spread and the broker’s fee. To facilitate the simulation
and to be able to assess the influence of trading cost on the final outcome, a constant c of either 0
(no transaction cost), 50bps (moderate transaction cost) or 90bps (high transaction) was added
to the taken returns whenever there was a change of position 4. Every time the algorithm enters
or exits the market this constant fraction is removed from the the taken return; see [Agrawal

4Bps means basis point and is a unit that equals one in ten thousand often used in finance to quantify transaction
cost: [bps] ≡ %��≡ 1

10,000
. Hence, the absolute transaction cost is the associated closing price multiplied by

tc/10, 000 where tc is the transaction cost in bps.
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# Identifier Type RSI Trading Strategy

1 Trend-following ∅ s1[n+ 1] =


1, if P̂(lead)[n] > (1 + b)P̂(lag)[n]

−1, if P̂(lead)[n] < (1− b)P̂(lag)[n]

0, else.

2 Trend-following Type 1 s2[n+ 1] =


1, if RSI[n] < 0.3

−1, if RSI[n] > 0.7

s1[n+ 1] else.

3 Mean reverting Type 1 s3[n+ 1] =


1, if RSI[n] < 0.3

−1, if RSI[n] > 0.7

s2[n+ 1] else.

4 Mean reverting ∅ s4[n+ 1] =


1, if P̂(lead)[n] < (1 + b)P̂(lag)[n]

−1, if P̂(lead)[n] > (1− b)P̂(lag)[n]

0, else.

5 Trend-following Type 2 s5[n+ 1] =


1, if RSI[n] < 0.3

−1, if RSI[n] > 0.7

s1[n+ 1] else.

Table 3.1.: List of the trading rules tested with their associated identifier

et al., 2011] for a similar approach and Equation 3.15 for the mathematical implementation.
Moreover, when computing the directional quality, the taken return includes the transaction
costs (e.g. if the return of the security is bigger than 0 but smaller than the transaction cost, the
associated taken return will be negative). This allows to have a real overview of the performance
when looking at the Qd. Indeed, a performance that has a Qd > 50% should be profitable. This
is not necessarily the case when transaction costs are not included in taken returns.

3.3.3. Looking Ahead and In-sample optimization

When designing a backtesting framework, one must make sure it replicates the historical level
of information for each point in time and that it does not include elements of future history.
Common errors include in-sample optimization (apply optimized parameters for a data-set on

the same data-set) or more generally having a looking-ahead bias (using information from the
future). Unfortunately, data misuse can easily happen and it is not rare to see data snooping in
backtesting frameworks, [Daniel et al., 2008].
In our testing framework, we tried to avoid those biases as much as possible. However, it is

almost impossible to totally avoid it, since, by definition, a backtest is done on data that are
already known. Moreover, the design of the algorithms to be tested is made already knowing
the information of the backtest period. For instance, it is known that trend-following strategies
worked in the past and, using this information, most of the trading rules were based on this
idea. The same remark applies to the use of the RSI and its parameter N = 14 that have been
empirically found to perform well in the past. Moreover, prices are sometimes not immediately
available and are sometimes slightly modified after a certain time. Those last examples are good
illustrations of data snooping biases that are very difficult to avoid and that the reader must
keep in mind while interpreting backtest results.
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Figure 3.4.: Selection of the best parameter set in the tuning region. In the figure, colors repre-
sents the intensity of the Sharpe ratio. Red: good Sharpe ratio, Blue: bad Sharpe
ratio. In this case, the algorithm would pick a parameter of N1 = 6 days for the
lead and N2 = 100 days for the lag.

3.3.4. Parameter Sweep

Since it is often assumed that securities change behavior over time, it is very rare that a combina-
tion of parameters can be kept and utilized as a magical parameter set on the whole time-series.
To overcome this problem, we introduced a training and a testing window.
The training window comes always before in time the testing window and they are adjacent.

For every new testing window, the model is trained (parameters are swept) on the training
window, the best performing set of parameters is kept and then applied on the corresponding
testing window.
Mathematically, if the function f(t1, t2, µ) computes the performance indicator for the time-

series from time t1 to time t2 with parameters µ, the parameter sweep solves the following:

µ∗t1,t2 = arg max
µ

f(t1, t2, µ). (3.25)

µ∗t1,t2 is then used in the testing window which is the interval [t2 +1; t2 +τ ] where τ is the length
of the testing window.
To avoid in-sample optimization, the two processes are completely separated and in any case

information about the testing window is known while doing the optimization over the training
window.
Practically, the different parameters that are swept are the length of the two moving averages

(N1 and N2
5). For each combination of parameter an associated Sharpe ratio is computed.

The set of parameters associated with the highest Sharpe ratio are used for the corresponding
testing window. A graphical illustration of the process of picking the best set of parameter in
the training window according to the performance measure is shown in Figure 3.4.

5Since the resonator filter has two parameters (the radius, r, and the angle, θ), the swept parameters are r1, r2, θ1
and θ2.
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3.3.5. Parameter Space and Overfitting

The law of parsimony states that the minimum amount of parameters should be chosen in order
to describe a system and all sort of redundancy should be avoided. For this study this means
that having a very good performance in-sample (training window) does not necessarily mean
that the performance will be as good out of sample. Most of the time, a very good performance
in-sample means that the probability of having overfit is high. Overfitting occurs when a model
has too many parameters and is thus even able to fit the noise or meaningless observations in
the training set. Those models are then totally useless out-of-sample and thus, while doing
predictions, it is of crucial importance to try not to overfit data in the training window.
Overfitting with price or returns time-series occurs very often and even with few parameters

because those time-series are known to have a signal to noise (SnR) ratio that is very low. For
the same reason it is hard to find underlying trends by using typical digital filter techniques
[DeBrunner and Charpentier, 2002].
Hence whenever it was possible, we resisted the temptation to add additional parameters in

the model. For instance, one could investigate different tuning window lengths and apply the
chosen parameters on different testing windows of different length. Moreover, some algorithms
impose a minimum holding period which probably increases the profitability as transaction costs
are minimized but add up another new parameter. All those are additional parameters that need
to be optimized and in most cases also increase the risk of overfitting.
At the light of this, we decided to have a window of length 1 day: for every day the optimization

is conducted over the tuning window. We chose 30 days as a length for the training window.
The choice is a tradeoff between efficiency of the algorithm (the longer the window, the longer
it takes to compute the strategy) and accuracy of the results.
It is tempting to design filters with many parameters as the shape then becomes much more

modular. For instance, instead of using window filters, we could have built a reversed logistic
function on 3 or 4 parameters. However, all the filters we tested (except the resonator that is
a two-parameter filter) are one-parameter filters. The reason for this is to decrease the risk of
overfitting during the training phase and then having totally inaccurate results in the testing
window.

3.4. Simulation Results

3.4.1. Overview

For every security in the portfolio, all possible combinations of trading rules listed in Table
3.1 were tested for different filters (Table 3.2a) , transaction costs (Table 3.2b) and tolerance
bands (Table 3.2c). This sums up to about 45, 000 different experiments. For each of them,
performance measures were computed, i.e. Qd, Sharpe ratio, Qd percentile with respect to
random strategies. Note that all windows and the EWMA, for fairness of comparison, were
tuned according to their energy so that they all use the same parameter N .
As mentioned in Section 3.3.4, for each security the trading algorithm runs along the time-

series taken between 2002 and 2012 and, for each day, applies the best set of parameters that
was found by doing a parameter sweep on a training window. If the considered trading day is n,
the training window comprises trading days n− τ to n− 1 where τ is the length of the training
window.
For the short moving average, the algorithm sweeps between N1 = 1 and N1 = 10 days and

for the long moving average between N2 = 50 and N2 = 200 days with an increment of 10 days.
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Name Characteristic Parameters
EWMA Exponentially weighted (Benchmark) λ or N
SMA Constant weights N
Half Triangular Linearly decreasing N
Double EWMA Two EWMA in series λ or N
Triple EWMA Three EWMA in series λ or N
Half Hann Half Window N
Half Hamming Half Window N
Half Blackman Half Window N
Half Kaiser Half Window N and β = 4
Resonator Two conjugated poles IIR r and θ

(a) Filters investigated

Transaction cost
0 bps No transaction cost
50 bps Moderate transaction cost
90 bps High transaction cost

(b) Transaction costs tested

Bands
0 %
2 %
5 %

(c) Bands tested

Table 3.2.: Parameters tested for each combination of security and trading strategy.

Since the resonator filter has two parameters, the algorithm sweeps over r = .5 to r = .99 with
increment of 0.01 and θ = π/10, 2π/10, ..., π.

3.4.2. Exploring the Sharpe ratios versus directional Qualities

Figure 3.5 shows all the results of the simulation and their associated Sharpe ratios and direc-
tional quality on a scatter plot. To be able to graphically visualize the formation of possible
clusters, subplots highlight the influence of a parameter on the final results. The light yellow
background indicates the region where the hypothesis H0 : Qd = 50% can not be rejected
whereas the white background indicates where it can be rejected in favor of Ha : Qd > 50% at
a 95% confidence level using the reasoning of Section 3.2.4. Finally, the black line indicates the
boundary between positive and negative Sharp ratios. Ideally, strategies should have a positive
Sharpe ratio and lie outside of the confidence interval.
When looking at the overall effect of the different trading rules (Figure 3.5a), asset classes

(Figure 3.5b), or filters (Figure 3.5c), it is difficult to argue in favor of some clustering patterns
as it seems that those parameters have very little influence on the results. It is important to note
that in Figure 3.5a it seems that in the upper right corner there is a cluster of mean reverting
strategies outperforming all other strategies. Those are actually exclusively represented by
one time-series (USD-BRL) for which the change of parameter do not influence the final results
greatly (recall that for every time-series, there are about 400 experiments). Interestingly, looking
at the lower right corner, there seems to be a cluster of poor performing trade-following strategies
that are actually mostly represented by USD-BRL and are the counterpart of the well performing
strategies.
Looking at Figure 3.5e, one can see that the larger the tolerance band, the smaller is the

variation in performance. This effect is expected since the introduction of the band should
refrain from trading in sideways markets. Hence, since less risks are taken some potential
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Figure 3.5.: Scatter plot showing the annualized sharpe ratio in function of the directional quality
Qd. Every point represent the outcome of one experiment. Colors emphasis one
parameter.
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positive returns are lost but on the other hand some potential negative returns are also avoided
and thus most of the very good and very bad performances were achieved when no tolerance band
was added. The lower right corner of Figure 3.5e shows strategies with a negative Sharpe ratio
but a very good Qd. This is explained when the magnitude of negative taken returns is higher
than positive taken returns. However, most of those dots are once again explained only by one
security, namely the exchange rate between the US-dollar and the Chinese Yuan (USD-CNY).
The time-series exhibits a very long artificial plateau between 2002 and 2004 and another one
from 2009 to 2010 and when a band is added in those conditions, the trading algorithm never
trades as it recognizes the sideways market but since moving averages are always lagging the
effect persists out of the plateau and the algorithm can not cope with it.
Figure 3.5d indicates that strategies without transaction costs perform much better than

strategies with transaction costs. This makes sense since for two similar strategies – one with
transaction costs and the other without– the one with transaction costs will be penalized in its
Sharpe ratio and Qd every time a change of position occurs.
Finally, it is interesting to note that almost no strategy including transaction costs lies outside

of the confidence interval, suggesting that the trading rules we investigate are not significantly
better than having a trading strategy based on the outcome of the flip of a coin and thus could
not be implemented per se in a trading framework. Nevertheless, strategies without transaction
costs can be used as trend indicators or as input to some more sophisticated trading strategies.

Results of the Resonator Filter

In the previous scatter plots we did not include the resonator filter as the result pattern is
completely different from the other filters as shows Figure 3.6. Not a single strategy lies outside
of the confidence interval. Strategies without transaction cost form a clear cluster and the
difference in transaction cost is clearly outlined (Figure 3.6c). At least two reasons explain the
notable difference in performance between the resonator and the other filters. The first one is
that the resonator is not a real moving average since the condition h[k] ≥ 0 is not fulfilled and
the inclusion of negative weights can create some unexpected results. Moreover, the resonator
has two parameters r and θ and since our algorithm uses two filters, this means four parameters
are optimized on a relatively small window. This greatly raises the chance of overfitting which
would also partly explain the worse performances.
At the light of the results and for the reasons enumerated above, the resonator is not discussed

any further.

3.4.3. Results obtained with Qd percentile performance measures

Since we noticed a big influence of the transaction cost on the final results and bands are not
significant for most strategies, Figure 3.7 shows a scatter plot of the experiment when there is
no transaction costs and without band. The y-axis is the Sharpe ratio and the x-axis is the Qd
percentile, p, as explained in Section 3.2.5. When p is close to one, the strategy is considered
as good as it outperforms most of the associated random strategies. To help distinguish good
strategies from bad ones, we included an arbitrarily set 95% confidence interval for the percentiles
(shown in yellow).
In Figure 3.7a we see that the trading strategy that is trend-following and includes the RSI II

on top of it (#10 in Table 3.1) exhibits significantly better performances than its competitors.
The percentile scores are really high and most of the results lie outside the 95% confidence
interval. Since the only difference with this trading rule and all the other ones, is that it puts a
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Figure 3.6.: Results for the trading strategies using the resonator.
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(a) Emphasis on trading strategies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−4

−3

−2

−1

0

1

2

3

4

5

Qd quantile of random strategies

A
nn

ua
liz

ed
 S

ha
rp

e 
R

at
io

 

 

Confidence interval with confidence interval of 95%
Equities
Commodities
currencies

(b) Emphasis on asset classes
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Figure 3.7.: Scatter plot showing the annualized Sharpe ratio in function of the Qd percentile
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Rule EWMA Resonator SMA DoubleEWMA halfKaiser halfHamming halfHann halfBlackman halfTriangular TripleEWMA
# Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR
1 0.5 -0.064 0.5 -0.038 0.5 -0.027 0.5 0.023 0.49 -0.15 0.5 -0.075 0.49 -0.086 0.49 -0.099 0.5 -0.064 0.5 0.074
2 0.5 0.11 0.51 0.6 0.5 0.13 0.51 0.21 0.51 0.15 0.5 0.09 0.53 0.82 0.5 0.1 0.5 0.11 0.51 0.31
3 0.49 -0.2 0.49 -0.59 0.49 -0.24 0.49 -0.36 0.49 -0.18 0.49 -0.19 0.49 -0.27 0.49 -0.15 0.49 -0.2 0.48 -0.5
4 0.5 0.049 0.51 0.085 0.5 0.042 0.5 -0.033 0.51 0.13 0.5 0.058 0.51 0.088 0.51 0.092 0.5 0.056 0.5 -0.083
5 0.56 1.4 0.48 -0.66 0.55 1.4 0.54 1.2 0.59 1.6 0.57 1.5 0.58 1.7 0.58 1.6 0.57 1.5 0.53 1

(a) No transaction cost
Rule EWMA Resonator SMA DoubleEWMA halfKaiser halfHamming halfHann halfBlackman halfTriangular TripleEWMA
# Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR
1 0.45 -0.7 0.26 -8.2 0.45 -0.65 0.47 -0.48 0.42 -0.99 0.44 -0.76 0.44 -0.79 0.43 -0.84 0.44 -0.74 0.47 -0.45
2 0.45 -0.57 0.26 -7.4 0.45 -0.54 0.47 -0.34 0.43 -0.71 0.45 -0.62 0.44 -0.12 0.44 -0.68 0.45 -0.61 0.47 -0.27
3 0.43 -0.98 0.24 -8.2 0.42 -1.1 0.43 -1.1 0.41 -1.1 0.42 -1 0.41 -1.2 0.42 -1 0.42 -1 0.43 -1.3
4 0.43 -0.73 0.27 -7.7 0.43 -0.84 0.44 -0.78 0.41 -0.8 0.43 -0.78 0.43 -0.77 0.42 -0.78 0.43 -0.78 0.44 -0.89
5 0.45 0.25 0.24 -8.2 0.44 0.097 0.45 0.098 0.43 0.25 0.44 0.23 0.43 0.29 0.44 0.26 0.44 0.22 0.45 -0.1

(b) Transaction cost: 50 bps
Rule EWMA Resonator SMA DoubleEWMA halfKaiser halfHamming halfHann halfBlackman halfTriangular TripleEWMA
# Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR Qd SR
1 0.44 -1.2 0.16 -14 0.44 -1.1 0.46 -0.86 0.41 -1.6 0.43 -1.3 0.43 -1.3 0.42 -1.4 0.43 -1.2 0.46 -0.82
2 0.44 -1.1 0.17 -12 0.44 -1 0.46 -0.75 0.42 -1.3 0.44 -1.1 0.43 -0.81 0.43 -1.2 0.44 -1.1 0.46 -0.7
3 0.42 -1.5 0.16 -13 0.41 -1.7 0.42 -1.6 0.4 -1.7 0.41 -1.6 0.4 -1.8 0.41 -1.6 0.41 -1.6 0.42 -1.9
4 0.42 -1.3 0.17 -13 0.42 -1.5 0.43 -1.3 0.4 -1.5 0.42 -1.4 0.41 -1.4 0.41 -1.4 0.42 -1.4 0.43 -1.5
5 0.43 -0.6 0.15 -13 0.42 -0.82 0.44 -0.68 0.41 -0.73 0.42 -0.69 0.41 -0.74 0.41 -0.69 0.42 -0.69 0.44 -0.88

(c) Transaction cost: 90 bps

Table 3.3.: Table showing the averaged Qd and SR for every filter and strategy for every trans-
action cost. Green (red) cells are when the average is significantly larger (smaller)
than the corresponding one of the EWMA (the benchmark) using a one-sided tWelch
test at a 95% confidence level.

lot of emphasis on the RSI indicator. Those results suggest that this indicator is indeed a very
good forecasting indicator.
However, from Figure 3.7c and Figure 3.7b no significant clusters can be seen.

3.4.4. Confirming Graphical Observations with Statistical Tests

Since, no clear graphical evidence on the different performance of the filter can be inferred, Table
3.3 shows the mean Sharpe ratios and mean Qd for all the different tested filters, trading rules
and transaction costs. It is essentially a different representation of Figure 3.5c, Figure 3.5a and
Figure 3.5d. Green cells indicate that the hypothesis H0 : µEWMA = µfilter can be rejected in
favor of Ha : µEWMA < µfilter with a p-value less than 5%. On the other hand, red cells indicate
that the associated H0 can be rejected in favor of Ha : µEWMA > µfilter. Tests are done using
the Welch’s Test (Section 3.2.6).
In table 3.3a, very few Qd are above 52% indicating that the hypothesis of randomness as

introduced in Section 3.2.4 can not be rejected. Except for the last strategy, the EWMA is
mostly always superior than any other filter. However, Strategy #5 is the best performing
strategy and it is interesting to see that all half window filters significantly perform better than
the EWMA.
When transaction costs are added, the Double and Triple EWMA seem to be the best per-

forming filter and mostly all the other possibilities are worse than the EWMA. Nevertheless,
when transaction costs are included, performances in general are quite disappointing as they
never reach a Qd = 50% and very rarely a positive Sharpe ratio. In those conditions, even if
some new filters significantly outperform the EWMA, it does not make sense to comment further
more on them as their performance is not good enough. Note also, that most of the windows
(be it on the Sharpe ratio or Qd side) significantly underperform the EWMA, suggesting that
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EWMA can not be outperformed with windows when transaction cost of those sizes are added.

3.4.5. Strategy #5 without transaction cost

Strategy #5 is the best performing strategy when transaction costs are not included. In this
section, we take a closer look at the distribution of its results. As already suggested by Table 3.3a,
the performance of the half windows beating the EWMA can be seen in Figure 3.8b. Moreover,
most of the results obtained with half windows lie outside the confidence interval. From Figure
3.8c, one can see a clear evidence that the larger is the band the better is the performance. Hence
– according to our results – using a half window (or more generally a one-parameter inverted
logistic shaped filter) and a tolerance band gives the best forecasting results and outperforms
both the SMA and EWMA. Also, half windows have very similar performances, this can be partly
explained graphically looking at Figure 2.15 where, when calibrated, the impulse response of the
different half-windows look alike.

3.4.6. Mean Trade Per Return and the Problem of Transaction Cost

As explained earlier, all strategies including transaction costs are not satisfying. However, the
choice of the value of the transaction costs (50 and 90bps) is quite conservative and it is not
rare to see transaction costs that are lower than those values. Thus, to remove this additional
parameter, we now examine our results with their mean return per trades.
Looking at Figure 3.9a, trend-following strategies have mostly Sharpe ratios higher than zero

whereas mean-reverting strategies show the inverse pattern. This is understandable since their
trading rules are the inverse of each other. However, resulting trading strategies are not reversed
because they are always optimized for the best set of parameter in the training window. This
plot, strongly argues in favor of trend-following strategies. Note that we could not see those
patterns before since the addition of bands and different transaction costs blurred the plot.
Figure 3.9b clearly shows that the investigated trading strategies perform poorly on currencies.

The other two asset classes have slightly better results. Here again, very good performing
strategies come from small time-series where the number of trade is small, Figure 3.11b.
Here again, no cluster with a specific filter can be seen here, Figure 3.9c.
When looking at Figure 3.10, the same remarks as in Figure 3.9 can be drawn. It is interesting

to see that in Figure 3.10a, strategies #5 have similar mean return per trade than the other
trend following strategies even if their Sharpe ratio is significantly better. Moreover, it can
be seen that if transaction set were 5bps or less mostly all trend-following strategies would be
profitable.

3.4.7. Conclusion

From the results of the previous section, it seems that simple trading rules generally have quite
poor performances and do not represent a good investment strategy. Moreover, in general no
clearly differentiated cluster could be found between different asset classes, tolerance bands,
strategy or filter.
However, as expected, transaction costs play a significant role in the performance results and

when looking only at strategies without transaction costs, rule #5 outperformed all the others.
Strategy #5 heavily relies on the RSI indicator suggesting that the RSI is a powerful indicator
and actually maybe better than the crossing of moving averages we used. For the same rule,
all the half windows deliver significantly better results than the EWMA and the SMA and thus
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Figure 3.8.: Results for the best performing trading strategy when transaction costs are set to
zero. 57
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Figure 3.9.: Scatter plot showing the mean return per trade in function of the Qd percentile
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Figure 3.10.: Mean Return per Trade versus Sharpe ratio for the experiments without transaction
cost and without band.
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(b) Mean return per trade versus number of trades
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Figure 3.11.: Scatter plot representing the outcome of the experiments without transaction cost
and without band.
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could potentially be substituted for the computation of trend indicators or as input to more
sophisticated trading strategies.
When looking at three performance dimensions: Sharpe ratio (risk), mean return per trade

(profit and loss) and Qd percentile (relative performance), it can be seen that trend-following
strategies exhibit much better performances on the profit and loss side than mean reverting
strategies. Even though, strategy #5 was the best with Sharpe ratio and Qd, its mean return
per trade is comparable to other trade following strategies.
Finally, the results obtained with the resonator corroborate the fact that predicting algorithm

with many parameters often have the unpleasing effect of overfitting.
A list of the exhaustive best results is given in the Appendix in Table A.5.
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4. Substitution of the EWMA with other
Moving Averages for the Computation of
the Value at Risk

In risk management, it is of great importance to have a coherent and widely recognized measure
to assess financial market risk. The Value at Risk (VaR) framework intends to fulfill this need.
It was first introduced in 1989 by J.P. Morgan to have a concise view of the risks of the firm
[Financial Times]. The aim of the VaR is to have a single figure that gives an immediate and
understandable overview of the risk of a certain financial instrument. In the 90s, the VaR quickly
established itself as a benchmark in the financial industry, [Jorion, 2001, McNeil, 2005].
In this chapter, we investigate the substitution of the Exponentially Weighted moving Average

(EWMA) with other moving averages for the computation of VaR within the RiskMetricsTM

framework.

4.1. Value at Risk
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Figure 4.1.: Illustration of the VaR-95% measure on a standard normal distribution.

The Value at Risk (VaR) is defined as the α quantile of a return distribution and gives an
indication of the loss threshold at an α-level one should expect when investing in a certain
instrument or portfolio over a pre-defined time horizon (Figure 4.1). Typically, 1− α is chosen
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to be either 1 − α = 95% or 1 − α = 99%. Hence, in the case of the V aR95%, 1 − α = 95% of
the returns for the considered period should be above the value and α = 5% below.
When computing the daily VaR, one needs to forecast the return distribution for the next

day. Several approaches exist. Among them it is worthwhile to cite the historical method, the
EWMA (see section 4.2), GARCH models [Engle, 1982], Monte-Carlo simulation [Glasserman
et al., 2000] or multi-fractals [Boisbourdain, 2008].
Most of those methods require two steps. In a first step, the variance of the returns is

forecasted. Then, from this estimate and assumptions about the shape of the distribution, the
α-quantile that represents the VaR is inferred.
In this study, we will solely focus on the RiskMetricsTM framework, [J.P. Morgan and Reuters,

1996], as it is widely used in financial institutions throughout the world and uses the EWMA
to forecast the variance. We then investigate if substituting the EWMA with reverted logistic-
shaped moving averages such as the windows introduced in section 2.7 yields more accurate
results.

4.2. Risk Metrics Framework

A few years after the introduction of VaR, in 1994, J.P. Morgan introduced the RiskMetricsTM

methodology with the aim to "[..] promote greater transparency for market risk measurement"
and "[..] to establish a benchmark for market risk measurement" [J.P. Morgan and Reuters,
1996]. A brief overview of the main ideas of the methodology is explained in the next section.
For exhaustive details on the matter, the reader is invited to consult [J.P. Morgan and Reuters,
1996].

4.2.1. Assumptions of the RiskMetricsTM model

This section presents the RiskMetrics methodology for the computation of a one-day VaR fore-
casting as well as the underlying statistical assumptions. RiskMetricsTM assumes that the
dynamic of prices follows a random walk [Brandimarte, 2006] :

lnPt = lnPt−1 + µ+ σtεt. (4.1)

where εt ∼ N (0, 1). Consequently this model does not take into account the heavy-tailed char-
acter of most return time-series. However, the assumption that returns are normally distributed
is useful because only the first and second moments are required to describe the whole distribu-
tion. Moreover, the methodology also assumes that the squared returns are autocorrelated (see
Section 4.2.6) and that µ = 0. With all this, one can rewrite the dynamics of the price described
in Equation 4.1 as

rt = σtεt (4.2)
εt ∼ N (0, 1) (4.3)

where rt are computed continuously, rt = ln
(

Pt
Pt−1

)
, and εt follows a Gaussian white noise

process.

4.2.2. Variance forecasting

The first step of the methodology is to forecast the variance of the returns. For this, RiskMetricsTM

applies the EWMA on the squared returns, meaning that recent observations will be given more
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weights and the weights decrease exponentially. Hence the variance predicting equation looks
like:

σ2
t+1 = λσ2

t + (1− λ)r2
t . (4.4)

If one develops the recursive term, Equation 4.4 can also be written

σ2
t+1 = (1− λ)

t∑
k=0

λkr2
k. (4.5)

It is easy to notice that Equations 4.4 and 4.5 are very similar to Equations 2.32 and the
impulse response 2.33. Indeed they are the application of an EWMA filter on the input r2 and
output σ2 as introduced in Section 2.6.1, but lagged, since we do not know the value of the
return at time t+ 1 and thus their impulse response is

hEWMA lagged[n] = hEWMA[n] ∗ δ[n− 1]. (4.6)

For the sake of convenience, we will now refer to Equation 4.6 when mentioning the EWMA
throughout this chapter.

4.2.3. New Moving averages investigated

As mentioned above, the RiskMetricsTM methodology is divided into two steps: forecasting
the variance and then inferring the quantile from the variance. To forecast the variance, the
RiskMetricsTM framework uses the EWMA but, as explained in the previous chapter, the EWMA
is nothing more than a low-pass digital filter. Thus it can be substituted with other filters with
similar functions to see if the forecasting power of those other moving averages is better.
We test the substitution of the EWMA with the SMA and half Windows. Figure 4.2 shows the

impulse responses of the different moving averages that we tested against the EWMA. We see
that the EWMA sharply decays whereas windows take more time to decrease, thus suggesting
that past observations will be more relevant to the output. It is important to note that those
filters have all been extensively used as windows in digital filtering (see Section 2.7) and are also
one-parameter filters 1.

4.2.4. Comparison of filters

The RiskMetrics methodology recommends a value of λ = .94 for the EWMA parameter to
compute the daily var. For details on why this particular value was chosen for the daily VaR,
the reader is invited to consult [J.P. Morgan and Reuters, 1996] p.99-100. As we described in
Section 2.6.1 it is equivalent in terms of energy to an SMA of length of N ≈ 32 days. Hence all
half-windows were calibrated so that they have the same energy as the SMA with N = 32. The
resulting impulse responses are shown in Section 2.7.4.

4.2.5. Inferring VaR from the forecasted variance

The definition of VaR states that it is the quantile at a certain level (α) of the return distribution.
The RiskMetricsTM assumes that the VaR can be retrieved by using the mean, µ, the variance,

1The Kaiser filter has two parameters, but in this chapter we restrain the second parameter to β = 4 as in
Figure 4.2

64



0 10 20 30 40 50 60 70 80 90
0

0.005

0.01

0.015

0.02

0.025

h[
n]

 −
 w

ei
gh

ts
 o

f t
he

 m
ov

in
g 

av
er

ag
e

n

 

 
Simple Moving Average (SMA)
Exponentially Weighted Moving Average (EWMA)
Half Hann Window
Half Hamming Window
Half Blackman Window
Half Kaiser Window with B=4

Figure 4.2.: Impulse function h[n] (weights) of the different moving averages investigated. Note:
moving averages are shown so that the distinctive shape of their impulse response
is shown and are not calibrated to have the same energy.

σ2 and the α-quantile of the distribution of the residuals εt that follows a centered normal
distribution. The VaR is then given as

V aR
1−α

(t+ 1) = µ+ qα(εt+1)σt+1 (4.7)

1− α qα(Z) = Φ−1(α)

68.3% −1.00
95.0% −1.64
97.5% −1.96
99.0% −2.33
99.5% −2.58

Table 4.1.: List of some quantiles of Z ∼ N (0, 1)

Since residuals εt are normally distributed, εt ∼ N (0, 1) (from Equation 4.2), the α-quantile is
by definition simply the α-quantile of the standard normal distribution or q1−α(εt) = Φ−1(1−α)
where Φ−1(·) is the inverse of the standard normal cumulative distribution function. As a quick
reference, we listed some values of Φ−1(1 − α) in Table 4.1. For µt+1, which is the expected
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value of the returns at time t+ 1, we can use equation 4.2 and equation 4.3 to show that

µt+1 = E(rt+1) = E(σt+1εt+1) = σt+1E(εt+1) = 0. (4.8)

Hence to compute a daily V aR1−α using the RiskMetricsTM method, we have

V aR
1−α

= Φ−1(1− α)σt+1 (4.9)

where σt+1 is the estimated variance from the EWMA and Φ−1(1 − α) the quantile from the
inverse cdf.
The problem with the normality assumption is that it underestimates the heavy-tailed char-

acter of a typical return time-series; [Cont, 2001] lists this property as a typical stylized-fact.
Thus, in addition to the normality assumption, we also relax assumption 4.2: the residuals, εt,
are still assumed homoskedastic and following a strong white noise process but with an unknown
distribution. Thus, for every new time-step where the daily VaR is to be computed an empirical
distribution of εt is computed. To do this, the last 200 observed returns were taken and divided
by the associated past forecasted variances to retrieve εt. By constructing an Kaplan-Meier
empirical distribution of the residuals, the quantile of interest qα(εt+1) can easily be found. To
compute the quantile of the residual distribution, the last 200 observed returns rt were taken and
the estimation of the variance and the estimated variance σ̂2

t and using Equation 4.2 obtained
the last 200 estimated residuals ε̂t. The expected value of the residuals can be estimated as

µ̂t+1 = Ê(rt+1) = Ê(σt+1εt+1) = σt+1Ê(εt+1) = σt+1ε. (4.10)

Practically εt is computed as the average over the last 200 k of εt−k (εt = 1
N

∑N−1
k=0 εt−k) and

the quantile. Figure 4.3 shows the the evolution of returns for a security where the VaR-95%
is computed using the methods explained above, one with historical data and one with the
normality assumption.
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Figure 4.3.: Illustration of the VaR-95% computation using the RiskMetrics methodology (as-
suming normality and with historical data). As most return time-series it exhibits
heteroskedasticity. The time-series is 3M Company between fall 2011 and summer
2012.
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Figure 4.4.: Autocorrelation of returns and squared returns of portfolio of 109 securities over a
period of 10 years. For each security, coefficients are averaged and the error bars
represent the standard deviation of the coefficients. For clarity, Rx(0) = 1 is not
shown on the graph

4.2.6. Autocorrelation

By using Equation 4.4 to forecast future volatility σt+1, one implicitly assumes that the output is
linearly correlated with the input of the filter or that squared returns at least partly explain the
future squared returns which in turn is linearly related to volatility. To show that this actually
makes sense, we computed the autocorrelation for all the securities present in our portfolio.
The autocorrelation gives information about the similarity between observations separated by a
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certain time interval. It is defined as2

Rx[k] = autocorr
x

[k] =
∑
n

x[n]x∗[n− k]. (4.13)

Hence, Rx(k) tells how much information in the signal can be inferred from an observation
x[n − k] to explain x[n]. Rx(0) always equal to one as all observations x(n − 0) explain en-
tirely x(n). For every security in our portfolio, we computed the first 21 coefficients of the
autocorrelation. In Figure 4.4b we show the distribution of the coefficients across the portfolio
by displaying their mean and associated standard deviation. We see that squared returns are
indeed significantly correlated since most of the coefficient means and their standard deviation
lie outside of the confidence interval (Confidence bounds are computed using the approach in
[Box and Reinsel, 1994] equations 2.1.13 and 6.2.2, pp. 33 and 188). Hence, it does make sense
to try to predict future squared returns since information about the future is actually contained
in lagged observations.
On the other hand, in our price dynamics from Section 4.2.1 we also assumed through Equation

4.3 that returns follow a white noise. This is supported by Figure 4.4a which essentially shows
the same as Figure 4.4b but for returns rater than squared returns. All coefficient means lie
in the interval. Additionally most of the standard deviations also lie in the confidence interval,
this strongly suggests that autocorrelation is mostly absent from returns and acts in favor of
the white noise assumption. From this statement, one can also imply that it is hard to predict
stock market returns using linear methods such as the ones we used in Chapter 3 (at least for
the securities included in our portfolio and at a daily frequency). Those two remarks are also
expounded as a stylized fact in [Cont, 2001].

4.2.7. Comparison with GARCH models

General Autoregressive Conditional Heteroskedasticity (GARCH) models were introduced by
Bollerslev [Bollerslev, 1986] in 1986 after the introduction of ARCH models by Engle in 1982
[Engle, 1982]. They try to overcome the problem of non-constant variance over-time in typical
return time-series (see Figure 4.3). The GARCH model is made of two parts: the autoregressive
part and the moving average part. The GARCH(p,q) can be defined as in [Farkas, 2011]:

σ2
t = α0 +

q∑
i=1

αir
2
t−i︸ ︷︷ ︸

ARCH

+

p∑
i=1

βiσ
2
t−i

︸ ︷︷ ︸
GARCH

. (4.14)

It is interesting to note that the EWMA is a special case of GARCH(1,1) with α0 = 0, α1 = (1−λ)
and β1 = λ, [Farkas, 2011]. Moreover, comparing Equation 4.14 and 2.4, it is easy to see that
the GARCH model can be seen as a digital filter with inputs r2

t and outputs σ2
t and α0 = 0. So,

2Autocorrelation is a correlation between two similar signals. Correlation in turn is the convolution of a first
signal with a reversed second signal so that

corr
x,y

(τ) = (x ∗ y(−·)) (τ) (4.11)

and

autocorr
x

(τ) = corr
x,x

(τ). (4.12)
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Name Properties Parameters adjusted to EWMA
EWMA Benchmark, Exponentially decreasing λ = .94, N = 32
SMA Constant weight N = 32
half Triangular Linearly decreasing M = 42 or N = 32
half Hann Linearly decreasing M = 48 or N = 32
half Hamming Linearly decreasing M = 44 or N = 32
half Blackman Linearly decreasing M = 56 or N = 32
half Kaiser Logistic-shaped M = 65 or N = 32, and B = 4

Table 4.2.: List of investigated filters, associated properties and the value of the parameter when
energy-adjusted with the EWMA with λ = .94 or N = 32.

all filters we investigated are special cases of a GARCH model and, more specifically, FIR filters
are special cases of ARCH models. However, the approach is different. Practitioners usually fit
GARCH models on past data using a maximum likelihood approach whereas we try to beat the
EWMA within a certain framework when the parameter is given. Hence, in this study we do not
try to beat GARCH models but rather try to come up with improved VaR estimates than the
RiskMetricsTM methodology using the same assumptions. Note also that since half windows are
FIR filters, the autoregressive part is missing and thus represent a constrained ARCH model.

4.3. Backtesting Methodology

In order to be able to compare the different filters, we computed the daily VaR for each day
for a portfolio of 109 securities over a period spanning 10 years (2002-2012). More information
about the content of the portfolio is given in Section A.4.1 of the Appendix. We computed the
VaR using six different moving averages, the benchmark being the EWMA. A list of the moving
averages and their properties is given in Table 4.2, their impulse responses are depicted in Figure
2.15. In order to avoid unwanted transient effects, the VaR is only computed after the 200th
observation. In this case, for the EWMA the tolerance level is very low Ω < 5 · 10−5. For the
FIR filters the tolerance Ω equals zero because their length is always smaller than 32.
Once the VaR is estimated, we assign a violation binary variable for each day. The value is

one if the return is lower than the VaR (VaR violation) and zero otherwise. Thus repeating
the process for every day of a time-series and taking the mean of the violation variables should
eventually lead to α if the estimate is perfect.
This can be described as a bernoulli process where X(t) is a binary variable denoting the

violation. The distribution looks like:

f(Xi|α) =

{
αXi(1− α)1−Xi Xi = 0, 1

0 else
. (4.15)

and thus E(Xi) = α where α is the tolerance defined in the VaR.
In order to estimate E(Xi), we compute the average xi =

∑T
k=1 xik for every instrument

where xik is the violation at time step k for instrument i. Moreover, since the time-series are
long (mostly about 10 years) the average over the whole sample might be misleading. Some
regions might largely overestimate VaR and some other largely underestimate it but the mean
over the whole sample might give a good estimate. So in addition to the mean xi, we also

69



generate a vector of means of random resampling (bootstrapping) for a single security

x̃il =
∑
k∈Γl

xik (4.16)

where Γl is a set containing randomly drawn indices. Finally, in order to assess the dispersion
of the estimates, the standard deviation for each instrument is calculated as

sxi =

√√√√ 1

L− 1

L∑
l=1

(x̃il − xi)2. (4.17)

The reason why the standard deviation is not directly computed from the xi is that the
dispersion of the individual day violation is not of interest to us. We are interested in knowing
whether the violations over the whole sample are more or less constant or if there are big jumps.
Hence, a security on which the VaR computation worked well should have an estimated mean of
xi = α and a standard deviation close to zero. A large standard deviation would mean that the
VaR computation is not robust over the whole sample and thus small values of sxi are favored.
In order to be able to see if one of the tested filters improve on the performance of the EWMA,
we computed the mean violation achieved with the filter of interest and compared it to the
benchmark. To see if the result is significantly different, we used the Welch test again (Section
3.2.6).

4.4. Results

We first display the results for every security on a scatter plot with the average violation on the
x-axis and its associated standard deviation on the y-axis for two different α-levels: 1 and 5%.
See Figures 4.6 and 4.5.
Results when the α-level is 5% (Figure 4.5) mostly have a mean x that is in the interval

[α ± 1%] and a standard deviation that is below sx = 0.6%, suggesting that the spread of
violations for the same security is pretty robust over time. Looking at the different clustering,
nothing can be inferred from the scatter plots. It seems that different asset classes or different
filters produce similar results. However, the results of the VaR computation using the historical
assumption seem to be shifted to the right (higher mean) compared to the ones using the
normality assumption.
For α = 1%, results are similar to α = 5%. Most of the observations are confined in the

interval x ∈ [α± 1%] and sx < 0.6. Nonetheless, the difference between the computation using
the historical assumption and the normality assumption is more pronounced; it seems clear from
the graph that the historical assumption yields much poorer results.
For both the α = 1% and α = 5% level, it is interesting to note that the standard deviation

seem to depend on the length of the sample. The longer the sample, the smaller is the standard
deviation (this is supported with Figures 4.5d and 4.6d). One of the reasons why such a behavior
is exhibited is mainly because when doing the resampling, the sample is too small to produce
good mean estimates and thus the associated standard deviation estimate is not reliable. This
also explains the outliers on the other scatter plots that represent exclusively time-series with
less than thousand points.
In order to assess the performances for the different filter more precisely, histograms of the

violations of the different filters are shown in Figures 4.7, 4.8, 4.9 and 4.10. In general, the
distribution is pretty much centered and symmetric around the α-level. However, for α = 1%

70



Filter xviolations smean violations t p-value
EWMA 0.01 0.0033 0 0.5
SMA 0.011 0.0031 0.48 0.32
Half Kaiser 0.01 0.0032 -0.66 0.25
Half Hamming 0.01 0.0032 -0.12 0.45
Half Hann 0.01 0.0032 0.036 0.49
Half Blackman 0.01 0.0032 0.024 0.49
Half Triangular 0.01 0.0032 0.0092 0.5

(a) Normal, α = 1%. See Figure 4.7

Filter xviolations smean violations t p-value
EWMA 0.048 0.0065 0 0.5
SMA 0.047 0.0065 -0.34 0.37
Half Kaiser 0.047 0.0058 -0.72 0.24
Half Hamming 0.047 0.0064 -0.38 0.35
Half Hann 0.047 0.0063 -0.23 0.41
Half Blackman 0.047 0.0064 -0.34 0.37
Half Triangular 0.047 0.0063 -0.32 0.37

(b) Normal, α = 5%. See Figure 4.9
Filter xviolations smean violations t p-value
EWMA 0.018 0.0034 0 0.5
SMA 0.02 0.0038 3.3 0
Half Kaiser 0.02 0.0039 4.4 0
Half Hamming 0.019 0.0035 2 0.022
Half Hann 0.019 0.0036 2.1 0.017
Half Blackman 0.019 0.0036 1.9 0.031
Half Triangular 0.019 0.0036 1.9 0.032

(c) Historical, α = 1%. See Figure 4.8

Filter xviolations smean violations t p-value
EWMA 0.05 0.0058 0 0.5
SMA 0.052 0.0057 3 0.0017
Half Kaiser 0.054 0.0052 4.9 0.00
Half Hamming 0.051 0.0058 1.7 0.049
Half Hann 0.051 0.0058 1.9 0.032
Half Blackman 0.051 0.0057 1.6 0.058
Half Triangular 0.051 0.0058 1.9 0.033

(d) Historical, α = 5%. See Figure 4.10

Table 4.3.: Results of the backtests. Mean violation and dispersion smean violations are shown
along with their associated t statistic and p-value. The t-test is a two-sample test
that compares the filter of interest with the EWMA, the hypothesis being H0 :
µEWMA = µfilter

using the historical assumption, the estimation of VaR is totally wrong. It is overestimated by
roughly 1% which is unacceptable, since it means that the allowance is twice as big as what is
to be forecasted. The shape of the distribution does not seem influenced by the shape of the
impulse response except in the case of α = 1% with the normality assumption where all the
windows present skewed distributions.
Table 4.3 summarizes the information present in the histograms and scatter plots. One sees

that in the case α = 1% with the normality assumption, the estimate is very close to α and all
the filters have very similar results. Furthermore, when conducting t statistics, none of the p-
values obtained is low enough to reject the hypothesis H0 : µEWMA < or > µnewfilter suggesting
that all the filters have similar performances. The same remarks can be made for α = 5% and
normality assumption.
However, when using the historical assumption, results are totally different. First, in the

α = 1% case, xviolations is much higher than the targeted value. Moreover, p-values are much
smaller and all the filters could reject the H0 hypothesis at a 5% level. This suggests that
EWMA has the best performance and that all the other filters have worse results.
When α = 5% using the historical assumption, results are also bad. EWMA has a good

estimate but all the other filters are significantly higher thus suggesting that EWMA is still the
best.
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(b) Comparison for different filters
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(c) Comparison between the normality and historical as-
sumption

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

sample length, N

D
is

pe
rs

io
n,

 s
ta

nd
ar

d 
de

vi
at

io
n

 

 

Observations

Regression, R2=0.59

(d) Illustration of the dependency of the sample length on
the standard deviation

Figure 4.5.: Scatter plot representing the outcome of the experiment when computing V aR1−α,
α = 5% with the methods described in the previous sections. The x-axis is the
relative number of violations. Ideally this should not exceed the α-level (here 5%).
The y-axis is the standard deviation of the violations when doing random sampling
of the violation vector (bootstrapping); ideally it should be as low as possible. The
confidence region is an arbitrarily set ±0.5% interval around thee α-level to facilitate
visualization of seemingly good performances from the rest.
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(b) Comparison within different filters for prediction of
the variance σ2
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(c) Difference of computation of VaR when using the nor-
mality assumption and historical data (200 days)
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Figure 4.6.: Scatter plot representing the outcome of the experiment when computing V aR1−α,
α = 1% with the methods described in the previous sections. The x-axis is the
relative number of violations. Ideally this should not exceed the α-level (here 1%).
The y-axis is the standard deviation of the violations when doing random sampling
of the violation vector (bootstrapping); ideally it should be as low as possible. The
confidence region is an arbitrarily set ±0.5% interval around thee α-level to facilitate
visualization of seemingly good performances from the rest.
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(e) half Hann window
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Figure 4.7.: Histogram of mean violation for complete portfolio. α = 1% and computed using
the normality assumption.
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Figure 4.8.: Histogram of mean violation for complete portfolio. α = 1% and using the historical
assumption
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Figure 4.9.: Histogram of mean violation for complete portfolio. α = 5% and using the normality
assumption.
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Figure 4.10.: Histogram of mean violation for complete portfolio. α = 5% and using the histor-
ical assumption.
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5. Conclusion
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Figure 5.1.: Illustration of the (non-)correlation of the moving average indicator and actual re-
turns for the first two quarters of 2012 of Google

The EWMA is well established in many fields of quantitative finance. In this thesis, we tested
it against other digital filters in an automated trading environment and as a variance predictor
within the RiskMetricsTM framework.
In the risk part, generally the EWMA remains the filter with the best results both with the

normality assumption or using historical data. Nonetheless, results obtained with the other
filters were only slightly worse suggesting that the moving average method used within the
RiskMetricsTM framework is not very important and the crucial part is to estimate the quantile
correctly as the difference in results between the two different methods suggest. Nevertheless,
the simplicity of the EWMA makes it the perfect candidate as it can almost be computed by
hand.
In the trading part, results for different filters were generally similar (Figure 3.5c) and not

very convincing. When transaction costs are neglected, good results could be obtained with
trading strategy #5. For this strategy, half windows significantly outperformed the EWMA
and the SMA. Hence, where the EWMA is used as a trend indicator it could be substituted
by one of the half windows for better performances. We haven’t found significant differences
in performance within the different half-window moving averages and any of those could be
used and still have similar results. When transaction costs were added, the double and triple

78



EWMA were the best performing moving averages. However, performances were really low. The
resonator and its two parameters exhibited very bad performances under every condition which
is mostly due to its non-moving-average characteristics and an inclination towards overfitting.
Forecasting stock market returns with digital filters turned out to be challenging and as an

illustration consider Figure 5.1 that shows Google stock returns for the first two quarters of 2012.
The x-axis represents our indicator, ∆ = P̂(lead)− P̂(lag) and the y-axis the associated returns of
the next day. The trend-following rule assumes that whenever ∆ > 0, returns should be positive
and when ∆ < 0, returns should be negative. It is quite clear from the graph, that there is no
such relation even though the indicator was optimized in-sample. This, along with the absence
of autocorrelation in returns (Section 4.2.6), and the generally recognized very low signal to
noise ratio stylized fact, makes it very difficult to design simple linear trading strategies.
Finally, the fact that the EWMA is well established, easy to compute and somewhat elegant

makes its substitution with another less known filter challenging.
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A. Appendix

A.1. Digital Filter Theory: complement

A.1.1. Short reference for complex numbers

z = <(z) + =(z) = a+ jb =
√
a2 + b2ej arctan b/a (A.1)

z = |z|e∠z = rejω = cosω + j sinω (A.2)

|z| =
√
a2 + b2 = r (A.3)

|z1 · z2| = |z1||z1| (A.4)
|z1 + z2| =

√
(a1 + a2)2 + (b1 + b2)2 (A.5)

=
√
r2

1 + r2
2 + 2r1r2 cos (ω2 − ω1) (A.6)

6= |z1|+ |z2| (A.7)

∠z = arctan
b

a
+ kπ = ω (A.8)

∠z1z2 = ∠z1 + ∠z2 = ω1 + ω2 (A.9)

∠(z1 + z2) = arctan

(
r1 sin (ω1) + r2 sin (ω2)

r1 cos (ω1) + r2 cos (ω2)

)
(A.10)

A.1.2. The inverse Z-transform

The inverse Z-transform does exactly the opposite of the Z-transform and allows to retrieve
x[n] from X(Z). It is defined as

x[n] = Z−1{X(z)} =
1

2jπ

∮
Γ
X(z)zn−1dz. (A.11)

where Γ is a counterclockwise path encircling the origin and entirely in the region of convergence
(ROC).
Practitioners rarely use the analytic inverse Z-transform formula but rather use a table of

Z-transforms along with Z-transform properties (See Table A.1).

A.1.3. Direct Computation of the Discrete Time Fourier Transform

The DTFT can also be computed directly from a discrete-time signal:

X(ejω) = F{x[n]} =
∑
n∈Z

x[n]e−jωn. (A.12)

and the inverse DTFT is

x[n] = F−1{X(ejω)} =
1

2π

∫ π

−π
X(ejω)ejωndω. (A.13)
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h[n] H(z) ROC

1. δ[n] 1 all z
2. δ[n− n0] z−n0 z 6= 0
3. u[n] 1

1−z−1 |z| ≤ 1

4. e−αnu[n] 1.
1−e−αz−1 |z| ≥ |e−α|

5. −u[−n− 1] 1
1.−z−1 |z| = 1

6. nu[n] z−1

(1−z−1)2
|z| ≥ 1

7. −nu[−n− 1] z−1

(1.−z−1)2.
|z| = 1.

8. n2.u[n] z−1(1.+z−1)
(1.−z−1)3

|z| ≥ 1

9. −n2.u[−n− 1] z−1(1.+z−1)
(1.−z−1)3

|z| = 1

10. n3.u[n] z−1(1.+4.z−1+z−2)
(1−z−1)4

|z| ≥ 1

11. −n3.u[−n− 1] z−1(1.+4.z−1+z−2)
(1−z−1)4

|z| = 1

12. anu[n] 1
1−az−1 |z| ≥ |a|

13. −anu[−n− 1] 1
1−az−1 |z| = |a|

14. nanu[n] az−1

(1−az−1)2.
|z| ≥ |a|

15. −nanu[−n− 1] az−1

(1−az−1)2.
|z| = |a|

16. n2.anu[n] az−1(1.+az−1)
(1−az−1)3

|z| ≥ |a|
17. −n2.anu[−n− 1] az−1(1.+az−1)

(1−az−1)3
|z| = |a|

18. cos(ω0.n)u[n] 1−z−1 cos(ω0)
1−2z−1 cos(ω0)+z−2 |z| ≥ 1

19. sin(ω0.n)u[n] z−1 sin(ω0)
1−2z−1 cos(ω0)+z−2 |z| ≥ 1

20. an cos(ω0.n)u[n] 1−az−1 cos(ω0)
1−2az−1 cos(ω0)+a2.z−2 |z| ≥ |a|

21. an sin(ω0.n)u[n] az−1 sin(ω0)
1−2az−1 cos(ω0)+a2.z−2 |z| ≥ |a|

Table A.1.: Table of common z-transform pairs. δ[n] is the delta Kronecker and u[n] is the
Hamming function. ROC denotes the region of convergence. [Wikipedia]

81



A.1.4. The Discrete Fourier Transform (DFT)

Since both the DTFT and the Z-transform are continuous functions, they are not numerically
computable. Therefore, we need a function that gives a frequency representation and that is
also numerically computable so that it can be modeled. The DFT overcomes this problem, as it
is a frequency sampled version of the DTFT. The DFT of x[n], denoted as X[m], and its inverse
can be computed as follows

X[m] =
N−1∑
n=0

x[n]e−j2πmn/N (A.14)

x[n] =
1

N

N−1∑
m=0

X[m]e−j2πmn/N . (A.15)

The DFT and inverse DFT are always defined for finite-length signal. From the previous
Equations, it easy to see that the exact sampling relationship between the DFT and DTFT is

F [m] = F (ej2πm/N ). (A.16)

Practically, the DFT gives the same information as the DTFT, namely amplitude and phase
response in the frequency domain.
Working digitally sometimes makes it hard to keep track of units, as the only unit n is the

sampling interval. In the case of X[m] we have the following relationship to a physical quantity:

fTs =
m

N
(A.17)

where N is the sample length, Ts the sampling period (so that x[n] = x(nTs), where x(·) is the
continuous signal) and f is the associated frequency with m. Moreover, the quantity ω is called
angular velocity and is defined as ω = 2πf . In this paper, except where indicated otherwise, we
will assume n to be trading days (Ts = 1 [day]).
From a computational point of view, Equations A.14 and A.15 are computed using a more

efficient algorithm called the Fast Fourier Transform (FFT) which significantly reduces the
computation time. Nevertheless, the output of a DFT or FFT is exactly the same.

A.1.5. Parseval’s Theorem

The Parseval’s theorem states that the energy in the time-domain is the same as the one in the
frequency domain. It is also known as Rayleigh’s identity.

N−1∑
n=0

|h[n]|2 =
1

N

N−1∑
k=0

|H[k]|2 (A.18)

where H[k] is the DFT of h[n].

A.1.6. Main Types of Filters

Digital filters are generally ordered in three categories: low- high- and bandpass filters. A lowpass
filter filters out high frequencies, a high pass filters filters out low frequencies and bandpass filters
only allow a certain frequency to go through. See Figure Figure A.1 for a graphical example.
Typical examples of those filter in our day-to-day life are very common. For instance, the

equalizer of any radio uses a mix of the filters to produce a balanced sound output. Low-pass
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(a) Ideal All-pass filter
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(c) Ideal High-pass filter
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(d) Ideal Band-pass filter
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Figure A.1.: Illustration of the main different types of filters in the frequency domain.
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Figure A.2.: Properties of the triangular moving average (TMA) filter (N = 16)

filters are used ECG program to be able to monitor the frequency of the heart without being
disturbed by higher frequency noises.

A.2. Additional filters and derivations

A.2.1. Triangular Moving Average (TMA)

The triangular moving average is a double SMA; two SMA filters are put in parallel which gives
an impulse response that looks like a triangle. Hence the filter equation is

y[n] = hSMA[n] ∗ hSMA[n]︸ ︷︷ ︸
hTMA[n]

∗x[n] (A.19)

where hSMA[n] is the impulse response of the SMA filter and hTMA[n] the impulse response of
the triangular moving average.
The derivation of the TMA impulse response from the SMA is given here below:

h[n] =
1

N
(u[n]− u[n−N ]) ∗ 1

N
(u[n]− u[n−N ])

=
1

N

u[n] ∗ u[n]− 2(u[n] ∗ u[n]) ∗ δ[n−N ] + (u[n] ∗ u[n]) ∗ δ[n−N ] ∗ δ[n−N ]︸ ︷︷ ︸
δ[n−2N ]


= u[n] ∗ u[n] ∗ (δ[n]− 2δ[n−M ] + δ[n− 2M ])

= n · u[n] ∗ (δ[n]− 2δ[n−N ] + δ[n− 2N ])

= n · u[n]− 2n · u[n−N ] + n · u[n− 2N ]

note that u[n] ∗ u[n] = n · u[n]1.
1

u[n] ∗ u[n] =
∑
k∈Z

u[k]u[n− k] =
n∑
k=0

u[n− k] = n · u[n]. (A.20)
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In the z-domain the impulse response is

H(z) = HSMA(z)2 =
1

N2

(
N−1∑
k=0

z−k

)2

. (A.21)

Practically, this means that a TMA with parameter N has N double zeros .

A.2.2. Generalization of the order of the SMA - the n-SMA

We showed in the previous paragraph that the frequency response of the TMA is nothing more
than the square of the frequency response of the SMA. Thus, by adding one parameter to the
SMA, one can construct the n-SMA, n being the power at which the frequency response of the
SMA is raised.
Hence,

HnSMA(z) =
1

Nn

(
N−1∑
k=0

z−k

)n
(A.22)

and
hNSMA[n] = (hSMA ∗ hSMA ∗ ... ∗ hSMA)︸ ︷︷ ︸

n times

[n]. (A.23)

This leads to a SMA filter that takes two parameters: N and n. N being the number of poles
and N how many times they are repeated.
The advantage of this is that the smoothness of a filter can be improved by putting in series

the same filter (basically doubling, tripling, ... the poles and zeros) but to the cost of phase lag
[Tillson].

A.2.3. Linear Moving Average

The linear moving average gives weights that decrease linearly. After N points the impulse
response is zero. Thus one has to solve the following equation system to find the impulse
response

h[n] =

{
b− an, n ≤ N
0, else

(A.24)

∞∑
k=0

h[k] = N

(
b− N + 1

2
a

)
= 0 (A.25)

h[N ] = b− a(N + 1) = 0 (A.26)

One finds b = 2/N and a = 2/(N(N)) and thus

h[n] =

 N−n∑N
k=0 k

= 2
N

(
1− n

N+1

)
, n ≤ N

0, else.
(A.27)

This moving average can also be seen as a half triangular filter. This idea of taking only one
half of the impulse response will be extended in Section 2.7.3.
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Figure A.3.: Properties of the linear moving average filter (N = 200)

A.2.4. Generalization of the EWMA to the n-EWMA

From the DEWMA and TEWMA, it is easy to generalize it to the n-order exponentially weighted
moving average. In this case, the system looks as following

y1[m] = (1− λ)x[m] + λy1[m]

y2[m] = (1− λ)y1[m] + λy2[m]

...

yn[m] = (1− λ)yn−1[m] + λyn[m] (A.28)

or simpler

yn[m] = xm ∗ (yn−1[m] ∗ ... ∗ y1[m]) (A.29)
⇔

Yn(z) = X(z)
n−1∏
k=1

Yk(z) (A.30)

From Equation A.28, it is easy to see that every equation has the same transfer function, i.e.
yk+1[m] = yk[m] ∗ h[m] where h[m] is the EWMA transfer function. Using this result and eq
A.30, one can write

HnEWMA = Hn
EWMA(z) =

Y (z)

X(z)
=

(1− λ)n

(1− λz−1)n
. (A.31)

Note that the n-EWMA is for the EWMA what the n-SMA is for the SMA (see section
A.2.2). Even so – as for the n-SMA – there is a tradeoff between the number of poles and thus
the smoothness of the filter and the total lag of the filter.
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A.3. Backtesting Framework Structure

In order to effectively backtest the different filters under different conditions, a framework has
to be set up that allows to launch experiments and do statistical tests on the performance of the
different filters in an automated way and on an entire cluster of data, e.g. all soft commodities.
The framework is designed on the model of the project structure (see fig A.4). An overview of
the workflow of the framework is depicted on fig A.5. The framework design was inspired by
[Chan, 2009b]. The main idea is to run an optimization of parameters over the time-series for
two filters. One benchmark (the EWMA) against a newly designed one (windows and two-poles
IIR filters). The output will always show the performance of the buy and hold strategy in
comparison with a chosen trading strategy applied to both the benchmark and the new filters.
For fairness of comparison, both filters are tested under the same conditions.

DATA

BENCHMARK

TRADING

NEW

PERFORMANCE

REPORT

Figure A.4.: Backtesting Framework Structure

A.3.1. Settings

This is the first step of the process where all the parameters have to be set and the scope of
the experiment is to be determined. An object is initialized with parameters that designs the
experiment to be carried out. A list of the most important attributes is given in table A.2. All
along the same experiment the parameters are to remain constant.
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Attribute Meaning
start_date and end_date Indicates the start and end time of the fetched time-series
transaction_cost Price of the transaction cost (in bp)
nTune length in days quarter of one window over which parameters are fitted
transient Delay before starting to trade (filter transient)
trading_strategy Defines a trading strategy
filter Defines filter to use

Table A.2.: Listing of the most important setting attributes

id ticker name currency exchange sector asset class
6537 KC1 Coffee USD ICE Softs Commodity

Table A.3.: Example of a one line output of the database. More information about the database
and its structure in section A.4

A.3.2. Tickers Selection

In this step, a list of tickers is selected according to a set of criteria. Those criteria can select
only one ticker (a specific security, e.g. coffee), some tickers (e.g. all soft commodities), or a
whole family of tickers (e.g. all commodities). A query with the criteria is then generated and
sent to the database which returns a set of lines with the desired information including the asset
class and sector it belongs to, the exchange it is traded at and the currency it is traded in. An
example of one database output line is given in table A.3.

A.3.3. Fetch Data and Formatting

Once the tickers of interest are retrieved, the associated time-series is fetched from the database.
Returns and NAV, see Section 3.2.1, are computed.
Formatting also includes the removing of weekends and bank holidays (where returns are

zero) and NaNs. Moreover, for commodities rolling dates are removed so that the time-series is
smooth and does not include regular gaps. If not removed, those gaps could be captured by the
filter and generate abnormally high virtual profits.

A.4. Database Structure and Content

The complete database structure is given in figure A.6.
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Matlab

Set settings

Tickers Selection
and Data Fetching

Formatting

Optimizing Parameters

Performance Measurement

Save Results

Create Graphical Output

External

Get data from DB

Synchronization
with Bloomberg

Save results in
DB or text file

Create PDFs

Figure A.5.: Overview of Framework Structure
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A.4.1. Portfolio

Table A.4.: Portfolio content
List of all the securities contained in the portfolio used for the tests in this study

Ticker Company name Asset Class Sector

ADTN ADTRAN, Inc. Equity Public Utilities
COLM Columbia Sportswear Company Equity Consumer Non-Durables
DEER Deer Consumer Products, Inc. Equity Consumer Durables
ESYS Elecsys Corporation Equity Capital Goods
GOOG Google Inc. Equity Technology
GRPN Groupon, Inc. Equity Technology
GPOR Gulfport Energy Corporation Equity Energy
HAS Hasbro, Inc. Equity Consumer Non-Durables
NVDQ Novadaq Technologies Inc Equity Health Care
QCOM QUALCOMM Incorporated Equity Technology
RYAAY Ryanair Holdings plc Equity Transportation
GCVRZ Sanofi Equity Consumer Durables
SIGM Sigma Designs, Inc. Equity Technology
SUNH Sun Healthcare Group, Inc. Equity Health Care
YHOO Yahoo! Inc. Equity Technology
MMM 3M Company Equity Health Care
AME AMTEK, Inc. Equity Consumer Durables
AT Atlantic Power Corporation Equity Energy
BAC Bank of America Corporation Equity Finance
BRY Berry Petroleum Company Equity Energy
BA Boeing Company (The) Equity Capital Goods
BP BP p.l.c. Equity Energy
CPE Callon Petroleum Company Equity Energy
CP Canadian Pacific Railway Limited Equity Transportation
CAT Caterpillar, Inc. Equity Capital Goods
CX Cemex S.A.B. de C.V. Equity Capital Goods
CVX Chevron Corporation Equity Energy
CEA China Eastern Airlines Corporation Ltd. Equity Transportation
CHA China Telecom Corp Ltd Equity Public Utilities
BLW Citigroup Inc. Equity Finance
CS Credit Suisse Group Equity Finance
DAL Delta Air Lines Inc. (New) Equity Transportation
DOW Dow Chemical Company (The) Equity Basic Industries
DD E.I. du Pont de Nemours and Company Equity Basic Industries
EW Edwards Lifesciences Corporation Equity Health Care
XOM Exxon Mobil Corporation Equity Energy
FDX FedEx Corporation Equity Transportation
F Ford Motor Company Equity Capital Goods
FTE France Telecom S.A. Equity Public Utilities
GNK Genco Shipping & Trading Limited Equity Transportation
GM General Motors Company Equity Capital Goods
GS Goldman Sachs Group, Inc. (The) Equity Finance

Continued on next page
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Table A.4 – continued from previous page
Ticker Company name Asset Class Sector

HLS HealthSouth Corporation Equity Health Care
HPQ Hewlett-Packard Company Equity Technology
HMC Honda Motor Company, Ltd. Equity Capital Goods
HBC HSBC Holdings plc Equity Finance
JPM J P Morgan Chase & Co Equity Finance
JW/A John Wiley & Sons, Inc. Equity Consumer Services
JNJ Johnson & Johnson Equity Consumer Durables
K Kellogg Company Equity Consumer Non-Durables
KNX Knight Transportation, Inc. Equity Transportation
KFT Kraft Foods Inc. Equity Consumer Non-Durables
LNKD LinkedIn Corporation Equity Technology
MAR Marriot International Equity Consumer Services
MDT Medtronic, Inc. Equity Health Care
MON Monsanto Company Equity Basic Industries
MS Morgan Stanley Equity Finance
NFG National Fuel Gas Company Equity Public Utilities
NKE Nike, Inc. Equity Consumer Non-Durables
NOK Nokia Corporation Equity Technology
NSC Norfolk Souther Corporation Equity Transportation
TLK P.T. Telekomunikasi Indonesia, Tbk. Equity Public Utilities
PCG Pacific Gas & Electric Co. Equity Public Utilities
RA RailAmerica, Inc. Equity Transportation
ENL Reed Elsevier NV Equity Consumer Services
RIO Rio Tinto Plc Equity Basic Industries
SIX Six Flags Entertainment Corporation New Equity Consumer Services
SNN Smith & Nephew SNATS, Inc. Equity Health Care
SNE Sony Corp Ord Equity Consumer Non-Durables
SWK Stanley Black & Decker, Inc. Equity Capital Goods
SYT Syngenta AG Equity Basic Industries
TEF Telefonica SA Equity Public Utilities
TRI Thomson Reuters Corp Equity Consumer Services
TM Toyota Motor Corp Ltd Ord Equity Capital Goods
TUP Tupperware Corporation Equity Consumer Non-Durables
TSN Tyson Foods, Inc. Equity Consumer Non-Durables
VZ Verizon Communications Inc. Equity Public Utilities
WAG Walgreen Co. Equity Health Care
WPO Washington Post Company (The) Equity Consumer Services
W 1 COMB Wheat Commodity Grains
C 1 COMB Corn Commodity Grains
O 1 COMB Oats Commodity Grains
S 1 COMB Soybean Commodity Grains
CC1 Cocoa Commodity Softs
KC1 Coffee Commodity Softs
SB1 Sugar Commodity Softs
CT1 Cotton Commodity Softs

Continued on next page
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Table A.4 – continued from previous page
Ticker Company name Asset Class Sector

QS1 Gas Oil Commodity Energy
CO1 Brent Crude Commodity Energy
CL1 COMB WTI Crude Oil Commodity Energy
NG1 COMB Natural Gas Commodity Energy
LA1 Aluminium Commodity Industrial Metals
LL1 Lead Commodity Industrial Metals
LP1 Copper Commodity Industrial Metals
LN1 Nikel Commodity Industrial Metals
GC1 COMB Gold Commodity Precious Metals
SI1 COMB Silver Commodity Precious Metals
PL1 COMB Platinum Commodity Precious Metals
PA1 COMB Palladium Commodity Precious Metals
USDCHF USD CHF Currencies Europe
USDEUR USD EUR Currencies Europe
USDJPY USD JPY Currencies Asia
USDCNY USD CNY Currencies Asia
USDINR USD INR Currencies Asia
USDBRL USD BRL Currencies Americas
USDGBP USD GBP Currencies Europe
USDCAD USD CAD Currencies Americas
USDZAR USD ZAR Currencies Africa
USDDZD USD DZD Currencies Africa

A.4.2. Results
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